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2. ROOTFINDER
J. Wegstein
National Bureau of Standards, Washington 25, D. C.

This procedure computes a value of g=x satis-
fying the equation x=f(x). The procedure calling
statement gives the function, an initial approxi-
mation a0 to the root, and a tolerance
paramater e for determining the number of sig-
nificant figures in the solution. This accelerated
iteration or secant method is described by the
author in Communsications, June, 1958.;
Root(f(),a,¢) =:(g)

comment

procedure
begin
Root b:=a ; c¢:=1{(b) ;
if (c=a) ; return
d:=a ; b:=c¢c ; e:=c¢

¢ := f(b)

g := (dXc—bXe)/(c—e—b+d)
if (abs((g—b)/g)<e¢) ; return
e:=¢ ; d:=b ; b:=g ;

Hob:

go to Hob
end

CERTIFICATION

2. RoorrFiNDER, J. Wegstein, Communications ACM,
February, 1960

Henry C. Thacher, Jr.,* Argonne National Labora-
tory, Argonne, Illinois

Rootfinder was coded for the Royal-Precision LGP-30 Com-
puter, using an interpretive floating point system with 28 bits
of significance. The translation from AvrGoL was made by hand.
Provision was made to terminate the iteration after ten cycles
if convergence had not been secured.

The program was tested against the following functions:

(1)  fx) = (x+1)"
(2) f(x) = tan x
B.a) f(xX) = 27ma + tan!lx (@=1,2,3,4)

(4.a) f(x) = sinh ax (@ = —1.2, —0.5, 0.5, 1.2)

(Root = 1.3247180)

Selected results were as follows:

f(x) o € Xk_1 Xk
1 1.3 1077, 10°® 1.3247233 1.3258637 1)
1 13 1075 o 1.3247165 )
2 5 10-3 — 4674691  —.36021288 a,2
2 4 10~ 184880381  +.69496143 a, 2
31 1 1075 7 7252531
32 2 10~ 14.066155
33 3 105 20.371026
34 4 10— 26.665767

(1) No convergence after 10 iterations. Underlined figures are in-
correct.
(2) For this funetion, f'(0) = 1; so cénvergence is not to be ex-
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pected at this root. However, the algorithm did not find

any other root.
It should be noted that the convergence criterion used fails
for a zero root. The provision to terminate after a given number
of cycles is therefore essential. Also, double precision is desirable.

* Work supported by the U. S. Atomic Energy Commission.

REMARK ON ALGORITHM 2

ROOTFINDER (J. Wegstein, Communications ACM,
February, 1960)

Hexry C. TuacHER, Jr.,* Argonne National Laboratory,
Argonne, Illinois

yk— Y _ (yk2 — Y)E7
Yk—1 — Y 20" — 1) + (yk_l - yk—2)f”

where Y is the desired root, and the derivatives f’ and '’ are
evaluated there. Convergence is thus second order, provided that
7 [ lykr — Y| <2 =11

The algorithm is, however, somewhat unstable numerically be-
cause of the factor f(yi 1) — f(yk-2) — ¥x-1 + yx—2 in the de-
nominator.

Experience has shown that the minimum for e is about one
half the precision being used. Provision to indicate when round-
off errors are causing random oscillations of g would be a desirable
addition.

The criterion used for terminating the iteration renders the
algorithm unsuitable for a zero root. A preliminary test for a
zero root would be desirable. In addition, the algorithm should
include provision for exit after a stated number of iterations.

Algorithm 15 appears to offer advantages along these lines.

+ Oyka — Y3

* Work supported by the U. 8. Atomic Energy Commission.
This algorithm has the convergence factor

REMARKS ON ALGORITHMS 2 AND 3 (Comm.
ACM, February 1960), ALGORITHM 15 (Comm.
ACM, August 1960) AND ALGORITHMS 25 AND 26
(Comm. ACM, November 1960)

J. H. WILKINSON

National Physical Laboratory, Teddington.

Algorithms 2, 15, 25 and 26 were all concerned with the cal-
culation of zeros of arbitrary functions by successive linear or
quadratic interpolation. The main limiting factor on the accuracy
attainable with such procedures is the condition of the method
of evaluating the function in the neighbourhood of the zeros.
It is this condition which should determine the tolerance which is
allowed for the relative error. With a well-conditioned method of
evaluation quite a strict convergence criterion will be met, even
when the function has multiple roots.

For example, a real quadratic root solver (of a type similar to
Algorithm 25) has been used on ACE to find the zeros of triple-
diagonal matrices T having tii = ai, tini = by, tuia =
=a; =0 a=

¢iy1 . As an extreme case 1 took a; = ag = -+
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a; = -+ =ap=1, an =2, b; =1, c¢; = 0so0 that the func-
tion which was being evaluated was x°(x — 1)3(x — 2). In spite
of the multiplicity of the roots, the answers obtained using float-
ing-point arithmetic with a 46-bit mantissa had errors no greater
than 274, Results of similar accuracy have been obtained for the
same problem using linear interpolation in place of the quadratic.
This is because the method of evaluation which was used, the two-
term recurrence relation for the leading principal minors, is a
very well-conditioned method of evaluation. Knowing this, I was
able to set a tolerance of 272 with confidence. If the same function
had been evaluated from its explicit polynomial expansion, then
a tolerance of about 27 would have been necessary and the mul-
tiple roots would have obtained with very low accuracy.

To find the zero roots it is necessary to have an absolute toler-
ance for \ Xrp1 — Xr | as well as the relative tolerance condition.
It is undesirable that the preliminary detection of a zero root
should be necessary. The great power of rootfinders of this type
is that, since we are not saddled with the problem of calculating
the derivative, we have great freedom of choice in evaluating the
function itself. This freedom is encroached upon if we frame the
rootfinder so that it finds the zeros of x = f(x) since the true func-
tion x — f(x) is arbitrarily separated into two parts. The formal
advantage of using this formulation is very slight. Thus, in Certi-
fication 2 (June 1960), the calculation of the zeros of x = tan x
was attempted. If the function (—x + tan x) were used with a
general zero finder then, provided the method of evaluation was,
for example

X=nr+Yy
vy
3730

tan X — X = —nr + -
cos y

the multiple zeros at x = 0 could be found as accurately as any
of the others. With a slight modification of common sine and co-
sine routines, this could be evaluated as

(siny — y) — y(cosy — 1)
14 (cosy — 1)

and the evaluation is then well-conditioned in the neighbourhood
of x = 0. As regards the number of iterations needed, the re-
striction to 10 (Certification 2) is rather unreasonably small.
For example, the direct evaluation of x® — 1 is well conditioned,
but starting with the values x = 2 and x = 1.5 a considerable
number of iterations are needed to find the root x = 1. Similarly
a very large number are needed for Newton’s method, starting
with x = 2. If the time for evaluating the derivative is about the
same as that for evaluating the function (often it is much longer),
then linear interpolation is usually faster, and quadratic inter-
polation much faster, than Newton.

In all of the algorithms, including that for Bairstow, it is use
ful to have some criterion which limits the permissible change
from one value of the independent variable to the next [1]. This
condition is met to some extent in Algorithm 25 by the condition
S4, that abs(fprt) < abs(x2 X 10), but here the limitation is
placed on the permissible increase in the value of the function
from one step to the next. Algorithms 3 and 25 have tolerances on
the size of the function and on the size of the remainders rl and
r0 respectively. They are very difficult tolerances to assign since
these quantities may take very small values without our wishing
to accept the value of x as a root. In Algorithm 3 (Comm. ACM
June 1960) it is useful to return to the original polynomial and to
iterate with each of the computed factors. This eliminates the l9ss
of accuracy which may occur if the factors are not found in In-
creasing order. This presumably was the case in Certification 3
when the roots of x4 7x* + 5x3 + 6x2 + 3x + 2 = 0 were
attempted. On ACE, however, all roots of this polynomial were
found very accurately and convergence was very fast using single-

—nwr
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precision, but the roots emerged in increasing order. The reference
to slow convergence is puzzling. On ACE, convergence was fast
for all the initial approximations to p and g which were tried.
When the initial approximations used were such that the real
root x = —6.35099 36103 and the spurious zero were found first,
the remaining two quadratic factors were of lower accuracy,
though this was, of course, rectified by iteration in the original
polynomial. When either of the other two factors was found first,
then all factors were fully accurate even without iteration in the
original polynomial [1].
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