COLLECTED ALGORITHMS FROM

CACM

3. SorutioN oF PorynomiaL EQuATION BY BAIRSTOW-
Hircacock METHOD
A. A. Grau
Oak Ridge National Laboratory, Oak Ridge, Tenn.

procedure
BAIRSTOW (n, a[], eps0, epsl, eps2, eps3, K) =:
(m, x[1, y{], nat[], ex{]);
comment The Bairstow-Hitchcock iteration is used to find
successively pairs of roots of a polynomial
equation of degree n with coefficients a;
(i=0,1, ---,n) where a, is the constant term. On
exit from the procedure, m is the number of pairs
of roots found, x[iJand y[i] (i=1, --,m) area
pair of real roots if nat[i]=1, the real and imagi-
nary parts of a complex pair if natfi]=—1, and
ex[i] indicates which of the following conditions
was met to exit from the iteration loop in finding
this pair:
1. Remainders, rl, r0, become absolutely less
than epsl.
2. Corrections, inerp, incrq, become absolutely
less than eps2.
3. The ratios, incrp/p, incrq/q, become ab-
solutely less than eps3.
4. The number of iterations becomes K.
In the last case, the pair of roots found is not
reliable and no further effort to find additional
roots is made. The quantity epsO is used as a
lower bound for the denominator in the expres-
sions from which inerp and inerq are found. ;
begin
integer G,], k,nl, n2, ml) ;
array (b, ¢[0 : n41]) ;
BAIRSTOW fori:=0()n ; b; := a;
bayi := 0 ; n2 := entire((n+1)/2)
nl := 2Xn2
for ml := 1(1)n2 ; beginp :=0 ; q:=0
fork := 1(1)K ; begin
step: fori:=0(1)nl ; c¢;:=b;
forj := nl—2,n1—4 ; begin
fori:= 0(1)] ; begin
Cit1 = Ciy1 — p X ¢
Ciy2 1= Ciy2 — q X ¢; end end
r0:=cn ; rl:= Cnio:
S0 = Cni—2 ; sl := cni3
v0:=~-qXsl ; vl:=s0—s1Xp
det0 := v1 X s0 — v0 X sl
if (abs(det0)<eps0) ; begin
p:=p+l ; q:=q+1 ; go tostep end

detl :=s0 X rl —sl X r0

det2 :=r0 X vl — v0 X sl

incrp := detl/det0 ; inerq := det2/det0
p:=p-+inerp ; q:= q-+incrq

if (abs (r0) < epsl) ; begin

if (abs (r1) < epsl) ; begin

eXmi :=1 ; go tonextendend
if (abs (incrp) < eps2) ; begin
if (abs (incr.q) < eps2) ; begin

3 P1- 0
eXm1 :=2 ; go tonextendend
if (abs (incrp/p) < eps3) ; begin
if (abs (incrq/q) < eps3) ; begin

eXm1 =3 ; go tonext end end end
eXmi 1= 4
next: S:=p/2 ; T:=8—gq
if (T Z20) ; beginT := sqrt (T)
natmy =1 ; Xm:=S+ T
Ymi := S — T end
if (T < 0) ; begin natm; := —1 ; Xmi := S
Ym1 := sqrt(—T) end
if (exm1 :=4) ; go to out
for] := 0(1) (n1—2) ; begin
by i=bj —p X b;
bjy2:=bjye—qXb; ; end
nl:=nl -2 ; if (nl1 <1)
out: begin m := ml ; return end
if (n1 <3) ; begin
ml :=ml+1 ; exm :=1
p := bi/be ; g := ba/be
go to next end
end end
CERTIFICATION

3. SoLuTION OF PorLynomiaL EqQuaTion By BAIRSTOW-
Hircacock MEetHOD, A. A. Grau, Communications
ACM, February, 1960.

Henry C. Thacher, Jr.,* Argonne National Labora-
tory, Argonne, Illinois.

Bairstow was coded for the Royal-Precision LGP-30 computer,
using an interpretive floating point system (24.2) with 28 bits of
significance. The translation from ALcoL was made by hand.

The following minor corrections were found necessary.

a. det2 :=10 X vl — vO X sl should be det2 := r0 X vl
— v0 X rl
b. 8 := p/2 should be S := —p/2.

After these were made, the program ran smoothly for the fol-
lowing equations:

—.97063897 + 1.00580761
—2.4706390 + 4.6405330i

xt — 3x3 4+ 20x2 4+ 44x + 43 = 0 X

X

I

X6 —2x5 +2x4 4+ x346x2—6x+8 =0
x = 0.50000000 £ 0.86602539i
x = 1.0000000 = 1.0000000i
1.5000000 = 1.3228756i

[
]

I
=

x5 4+ x* — 8x3 — 16x2 4+ 7x + 15

.000000005,** — 0.99999999
X = 3.0000000, 0.99999999
X = —2.0000000 £ 1.0000000i

With the equation x5 4 7x¢ 4 5x3 4 6x2 + 3x + 2 = 0 conver-
gence was slow, and full accuracy was not obtained. However, the

X

COLLECTED ALGORITHMS (cont.)

equation with reciprocal roots, 2x% + 3x* + 6x* + 5x? + 7x +
1 = 0, converged rapidly.

* Work supported by the U. 8. Atomic Energy Commission.
** §purious zero real roots are introduced for equations of odd
order.

CERTIFICATION OF ALGORITHM 3

SOLUTION OF POLYNOMIAL EQUATIONS BY
BAIRSTOW HITCHCOCK METHOD (A. A. Grau,
Comm. ACM, T'ebruary, 1960)

JaMES S. VANDERGRAFT

Stanford University, Stanford, California

Bairstow was coded for the Burroughs 220 computer using the
Burroughs Ancor. Conversion from Avrcorn 60 was made by hand
on a statement-for-statement basis. The integer declaration had
to be extended to include n, k, n, NAT, EX, and the corrections
noted in the certification by Henry C. Thacher, Jr., Communica-
tions ACM, June, 1960, were incorporated.

By selecting the input parameters carefully, all branches of
the routine were tested and the program ran smoothly. The fol-
lowing polvnomials equations were solved:

X6 — 14x* + 49x2 — 36 = 0, x = =4 1.0000000
x = £ 1.9999998
X = = 3.0000001
8 — 30x8 4+ 273x* — 820x% + 576 = 0, x = £ 1.0000000
X = = 2.0000000
x = £ 2.9999999
N =+ 4.0000001

Several minor errors were found in the certification by Mr.
Thacher. The constant term in the first polynomial should be 54
instead of 43, the second pair of roots for that polyvnomial should
be + 2.470639 + 4.6405330 i, and the second pair of roots for the
second polyvnomial should be —1.0 % i.

REMARKS ON ALGORITHMS 2 AND 3 (Comm.
ACM, TFebruary 1960), ALGORITHM 15 (Comm.
ACM, August 1960) AND ALGORITHMS 25 AND 26
(Comm. ACM, November 1960)

J. H. WiLkINsON

National Physical Laboratory, Teddington.

Algorithms 2, 15, 25 and 26 were all concerned with the cal-
culation of zeros of arbitrary functions by successive linear or
quadratic interpolation. The main limiting factor on the accuracy
attainable with such procedures is the condition of the method
of evaluating the function in the neighbourhood of the zeros.
It is this condition which should determine the tolerance which is
allowed for the relative error. With a well-conditioned method of
evaluation quite a strict convergence criterion will be met, even
when the function has multiple roots.

For example, a real quadratic root solver (of a type similar to
Algorithm 25) has been used on ACE to find the zeros of triple-

diagonal matrices T having tii = ai, tii = bia, tin =
ciy1 . As an extreme case 1 took a; = ay = -+ = 2, =0, a5 =
a; = --- = ap =1, an =2, b; =1, ci = 0so that the func-

tion which was being evaluated was x8(x — 1)%(x — 2). In spite
of the multiplicity of the roots, the answers obtained using float-
ing-point arithmetic with a 46-bit mantissa had errors no greater
than 27%. Results of similar accuracy have been obtained for the
same problem using linear interpolation in place of the quadratic.
This is because the method of evaluation which was used, the two-

3-P2- 0

term recurrence relation for the leading principal minors, s a
very well-conditioned method of evaluation. Knowing this, 1 was
able to set a tolerance of 272 with confidence. If the same function
had been evaluated from its explicit polynomial expansion, then
a tolerance of about 277 would have been necessary and the mul-
tiple roots would have obtained with very low accuracy.

To find the zero roots it is necessary to have an absolute toler-
ance for | Xry1 — X, | as well as the relative tolerance condition.
It is undesirable that the preliminary detection of a zero root
should be necessary. The great power of rootfinders of this type
is that, since we are not saddled with the problem of calculating
the derivative, we have great freedom of choice in evaluating the
funection itself. This freedom is encroached upon if we frame the
rootfinder so that it finds the zeros of x = f(x) since the true func-
tion x — f(x) is arbitrarily separated into two parts. The formal
advantage of using this formulation is very slight. Thus, in Certi-
fication 2 (June 1960), the calculation of the zeros of x = tan x
was attempted. If the function (—x + tan x) were used with a
general zero finder then, provided the method of evaluation was,
for example

X=nr-+y
¥y
330

tan x — x = —nr +
cos y

the multiple zeros at x = 0 could be found as accurately as any
of the others. With a slight modification of common sine and co-
sine routines, this could be evaluated as

(siny —y) — ylecosy — 1)
14 (cosy — 1)

and the evaluation is then well-conditioned in the neighbourhood
of x = 0. As regards the number of iterations needed, the re-
striction to 10 (Certification 2) is rather unreasonably small.
For example, the direct evaluation of x% — 1 is well conditioned,
but starting with the values x = 2 and x = 1.5 a considerable
number of iterations are needed to find the root x = 1. Similarly
a very large number are needed for Newton’s method, starting
with x = 2. If the time for evaluating the derivative is about the
same as that for evaluating the function (often it is much longer),
then linear interpolation is usually faster, and quadratic inter-
polation much faster, than Newton.

In all of the algorithms, including that for Bairstow, it is use
ful to have some criterion which limits the permissible change
from one value of the independent variable to the next [1]. This
condition is met to some extent in Algorithm 25 by the condition
S4, that abs(fprt) < abs(x2 X 10), but here the limitation is
placed on the permissible increase in the value of the function
from one step to the next. Algorithms 3 and 25 have tolerances on
the size of the function and on the size of the remainders r1 and
0 respectively. They are very difficult tolerances to assign since
these quantities may take very small values without our wishing
to accept the value of x as a root. In Algorithm 3 (Comm. ACM
June 1960) it is useful to return to the original polynomial and to
iterate with each of the computed factors. This eliminates the 1?ss
of accuracy which may occur if the factors are not found in in-
creasing order. This presumably was the case in Certification 3
when the roots of x4+ 7xt 4 5x3 + 6x* + 3x + 2 = 0 were
attempted. On ACE, however, all roots of this polynomial were
found very accurately and convergence was very fast using single-
precision, but the roots emerged in increasing order. The reference
to slow convergence is puzzling. On ACE, convergence was fast
for all the initial approximations to p and g which were tried.
When the initial approximations used were such that the real
root x = —6.35009 36103 and the spurious zero were found first,
the remaining two quadratic factors were of lower accuracy,
though this was, of course, rectified by iteration in the original

—nwr +

COLLECTED ALGORITHMS (cont.)

polynomial. When either of the other two factors was found first,
then all factors were fully accurate even without iteration in the
original polynomial [1].
REFERENCE
[11 J. H. WiLkinsox. The evaluation of the zeros of ill-conditioned
polynomials Parts I and II. Num. Math. 1 (1959), 150-180.

CERTIFICATION OF ALGORITHM 3

SOLUTION OF POLYNOMIAL EQUATION BY
BARSTOW-HITCHCOCK (A. A. Grau, Comm. ACM
Feb. 1960)

Jou~ HErRNDON

Stanford Research Institute, Menlo Park, California

Bairstow was transliterated into BALGOL and tested on the
Burroughs 220. The corrections supplied by Thatcher, Comm.
ACM, June 1960, were incorporated. Results were correct for
equations for which the method is suitable. x* — 16 = 0 is one
of those which gave nonsensical results. Seven-digit results were
obtained for 12 test equations, one of which was x® — 2x® 4 2x* +
x4+ 6x2 — 6x +8 = 0.

3-P 3-

0

