COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 21

BESSEL FUNCTION FFOR A SET OF
ORDERS

W. BorscH-SUPAN

National Bureau of Standards, Washington 25, D. C.

INTEGER

procedure BESSELSETINT (x,n,¢, J) ; valuex,n,e ;
real x, e ; integern ; real arraylJ ;

comment: This procedure computes the values of the Bessel
functions J,(x) for real argument x and the set of all integer
orders from 0 up to n and stores these values into the array J,
whose subscript bounds should include the integers from 0 up
ton. nmust be nonnegative.

The computation is done by applying the recursion formula
backward from p = k down to p = 0 as described in MTAC 11
(1957), 255-257. k is chosen to vield errors less than 107°
approximately after the first application of the recursion. The
recursion is repeated with a larger k until the difference be-
tween the results of the two last recursions doesn’t exceed the
given bound ¢ > 0. The steps in increasing k are chosen in
such a way that the errors decrease at least by a factor of
approximately 1075, There is no protection against overflow. ;

begin real dist, recO, recl, rec2, sum, max, err
integer k, p
if x = 0 then
begin J[0] :=1 ;
go to Exit
end ;
dist := if abs(x) = 8 then 5 X abs(x) T (1/3) else 10 ;
k := entier ((if abs(x) 2 n then abs(x) elsen) + dist) +1 ;
s := false ;
recO :=0 ; recl:=1 ; sum:=0 ;
for p := k step —1 until 1 do
begin J[if p > n + 1 then n else p — 1] := rec2 :=
2 X p/x X recl — recO ;
if p = 1 then sum := sum + rec2
else if p + 2 X 2 p then sum :=
sum + 2 X rec2

)

; Booleans ; ‘real array Jbar[0:n] ;

for p := 1 step 1 until ndo J[p] :

Il
=

recO := recl ; recl := rec2
end recursion ;
Norm: for p := 0 step 1 until n do J[p] := J[p]/sum ;
if s then
begin max := 0 ;
for p := 0 step 1 until n do
begin err := abs (J{p] — Jbar(p]) ;
if err > max then max := err
end maximum error ;
if max < ¢ then go to Exit
end then
else s := true ;
for p := 0step | until n do Jbar[p] := J[p] ;

k := entier (k + dist) ;
go to Rec

Exit: end BESSELSETINT

21-P 1- ¢

CERTIFICATION OF ALGORITHM 21 [S17]
BESSEL FUNCTION FOR A SET OF INTEGER
ORDERS
[W. Borsch-Supan, Comm. ACM 3 (Nov. 1960), 600]
J. Starrorp (Recd. 16 Nov. 1964)
Westland Aircraft Ltd., Saunders-Roe Division, East
Cowes, Isle of Wight, Eng.

If this procedure is used with a combination of a moderately
small argument and a moderately large order, the recursive evalu-
ation of rec2 in the last line of the first column can easily lead to
overflow. This occurred, for instance, in trying to evaluate
J10(0.01).

The following alterations correct this:

(i) Declare a real variable z and an integer variable m;
(ii) After line rec insert:
2z := MAX/4 X abs (z/k);
comment MAX is a large positive number approaching in
size the largest number which can be represented. The nu-
merical value of M AX/4 is written into the procedure;
(iii) At the end of the first column insert:
if abs(rec2) > z then

begin
recl 1= recl/z; rec2 := rec2/z; sum := sum/z;
for m := n step —1 until p — 1 do J[m] := J[m]/z
end;

With these alterations the procedure was run on a National-
Elliott 803, forz = —1,0,0.01, 1,10 and n = 0, 1, 2, 10, 20. The
-esults agreed exactly with published seven-place tables.

[See also Algorithm 236, Bessel Functions of the First Kind
(Comm. ACM 7 (Aug. 1964), 479) which is not restricted to inte-
ger values. Although it is a much more complicated program,
Algorithm 236 is slightly faster than Algorithm 21 as corrected, at
least in some cases.—Ed.]

