COLLECTED ALGORITHMS FROM CACM

ALGORITHM 23
MATH SORT
WALLACE FEURZEIG
Laboratories for Applied Science, University of Chicago,
Chicago, IlL.
procedure MATHSORT (INVEC, OUTVEC, TOTEVEC,
n, k, SEKTFUNC) ; valuen, k ;
array INVEC, OUTVEC ;
integer array TOTEVEC ;
integer procedure SETFUNC
integer n, k ;
begin comment MATHSORT is a fast sorting algorithm which
produces a monotone rearrangement of an arbitrarily ordered
set of n numbers (represented by the vector INVEC) by a
surprising though familiar device. The resultant sorted set is
represented by the vector OUTVEC. The key field, i.e. the
ordered set of bits (or bytes) on which the sort is to be done,
is obtained by some extraction-justification function denoted
SETFUNC. The key field allows the representation of k pos-
sible values denoted 0,1, ... , k—1.

The procedure determines first of all the exact frequency
distribution of the set with respect to the key, i.e. the number
of elements of INVEC with key field value precisely equal to
j for all j between 0 and k—1. The cumulative frequency dis-
tribution TOTEVEC [i] = > i (Number of elements of
INVEC with key value = j) is then computed for0 =i = k—1.
This induces the direct assignment (storage mapping func-
tion) of each element of INVEC to a unique cell in OUTVEC.
This assignment (like the determination of the frequency
distribution) requires just one inspection of each element of
INVEC. Thus the algorithm requires only 2n ‘look and do”’
operations plus k—1 additions (to get the cumulative fre-
quency distribution).

The algorithm can be easily and efficiently extended to
handle alphabetic sorts or multiple key sorts. To sort on
another key the same algorithm is applied to each new key
field with the new INVEC designated as the last induced
ordering (i.e. the current OUTVEC). The algorithm has been
used extensively at LAS on binary as well as decimal machines
both for internal memory sorts and (with trivial modification)
for large tape sorts ;
for i:=1stepluntilndo

TOTEVEC[SETFUNC(INVECIi])] := TOTEVEC
[SETFUNC(INVEC{HD]+1 ;
for i:= lstepluntilk—1do
TOTEVECIi] := TOTEVEC[i] + TOTEVEC[i—1] ;
for i:= lstepluntilndo
begin OUTVEC[TOTEVECSETFUNC(INVECI[i]]]
:= INVEC[] ;
TOTEVEC[SETFUNC(INVECIi])] :=
TOTEVEC[SETFUNC(INVEC[])] — 1 ;
end
end MATHSORT.

23-P1- 0

CERTIFICATION OF ALGORITHM 23

MATHSORT (Wallace Teurzeig, Comm. ACM, Nov.,
1960)

Russern W. RaNsHAW

University of Pittsburgh, Pittsburgh, Pa.

The MATHSORT procedure as published was coded for the
IBM 7070 in ForTran. Two deficiencies were discovered:
1. The TOTVEC array was not zeroed within the procedure.
This led to some difficulties in repeated use of the procedure.
2. Input vectors already in sort on nonsort fields were unsorted.
That is, given the sequence
31, 21, 32, 22, 33,
Mathsort would produce, for a sort on the 10’s digit:
22, 21, 33, 32, 31,
which is definitely out of sequence.
The following modified form of the procedure corrects these
difficulties. Note the transformation of symbols.

procedure MATHSORT (I, O, T, n, k, 8); value n, k;

array I, O; integer array T; integer procedure S;
integer n, k;
begin fori:= Ostep 1 untilk — 1 do T[i] := 0;

fori:= 1step 1 until n do T[S(I[i})] := T[SI[i])] 4+ 1;
for i := k — 2 step —1 until 0 do Tli] := T[] +
T + 1]
fori := 1step 1 until n do

begin O[n + 1 — TS{i)]] := Ifil;

TSAGD] := TSAGD] - 1;
end
end MATHSORT.

Using the MATHSORT procedure ten times and having the
procedure S supply each digit in order, 1000 random numbers of
10 digits each were sorted into sequence in 31 seconds. The method
of locating the lowest element, interchanging with the first ele-
ment, and continuing until the entire list has been so examined
yielded a complete sort on the same 1000 random numbers in 227
seconds. Using the Table-Lookup-Lowest command in the 7070
yielded 56 seconds for the same set of random numbers.



