COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 25

REAL ZEROS OF AN ARBITRARY FUNCTION
B. LEAVENWORTH

American Machine and Foundary Co., Greenwich, Conn.

procedure ZEROS(n, C, FUNCTION, m, epl, ep2, ep3, eta) ;

integer n,m ; real epl, ep2, ep3, eta

procedure FUNCTION

vomment: This procedure finds the real zeros of an arbitrary
function using Muller’s method! ? and is adapted from a
FORTRAN code by Frank.? Each iteration determines a zero
of the quadratic passing through the last three function
values. Parameters include the number of roots desired n.
If C; is zero, starting values are —1, 1, 0 respectively. If
C; = B then the starting values are .98, 1.18, 8. The procedure
FUNCTION (rt, frt) must be supplied to evaluate the func-
tion value frt, given the argument rt. m is the maximum
number of iterations permitted. epl is the relative conver-
gence criterion on successive iterates. ep2 is the absolute
convergence criterion on the function value. eta is the spread
for multiple roots, that is, if [rt — Ci| < ep3 where C; 18 a
previously found root, then rt is replaced by rt + eta ;

begin integer L, jk, i, mm ; real p, pl, p2, x0, x1, x2, rt,

frt, fprt, d, dd, di, h, bi, den, dn, dm, tem ;

switch S : 81, 82, 83, 4
for L := i step 1 until m do

; array C

begin jk := 0 ; if C[L] = 0 then go to initial else
go to assign ;
initial: p:=—1 ; pl:=1 ; p2:= 0 ; go tostart ;
assign: p:=.9X C[L] ; pl:=11XC[L] ; p2:= CIL] ;
gtart: rt := p ; go to fn ;
enter: go to S[if jk < 4 then jk else 4] ;
S81: rt:=pk ; x0:=fprt ; gotofn ;
S2: rt:=p2 ; xl:=fprt ; gotofn ;
33: x2:=fprt ; h:=if C[L] = 0 then —1
else —.1 X C[L] ; d:= -5 ;

loop: dd :=14+d ;
(dd + d) ; .
den:=bi12 —4X x2XdXddX(x0X d~— (x1 X dd) +x2) ;
if den < 0 then den := 0 else den := sqrt(den)
dn := bi 4+ den ; dm := bi—den ;
if abs(dn) < abs(dm) then den := dm else den := dn ;
ifden = 0 thenden :=1 ;
di :=—2Xx2Xdd/den ; h:=diXh ;
go to if abs(h/rt) < epl then call else fn ;

bi :=x0X dT2— x1 X ddT2 X x2 X

?

rt:=rt+h ;

34: if abs(fprt) < abs(x2 X 10) then
begin x0 := x1 ; xl :=x2 ; x2:=fprt ; d:=di ;
g0 to loop end else begin di :=di X 5 ; h:=hX .5 ;

rt :=rt—h ; gotofnend ;
fn: jk:=jk+1 ; ifjk < m then mm := 1elsemm :=0 ;
call: FUNCTION(rt, frt) ; if mm = 1 then go to compute
else go to root ;
compute: fprt := frt ;
for i := 2 step 1 until L do
begin tem := rt— Cfi— 1] ; if abs(tem) < ep3 then go to
change else fprt := fprt/tem end
test: if abs(frt) < ep2 A abs(fprt) < ep2 then go to root
else go to enter

25-P1- 0O
change: rt:=rt4eta ; jk:=ijk—1 ;gotofn ;
root: C[L] := rt end L
end ZEROS

1D. E. MuLLER, A Method for Solving Algebraic Equations
Using an Automatic Computer, MTAC 10 (1956).

*W. L. Frank, Finding Zeros of Arbitrary Functions, J. ACM
5 (1958).

3W. L. Frankg, RWGRT, General Root Finder 704 FORTRAN
Source Language Subroutine SHARE Distribution ¥ 635. Param-
eters used by Frank are: epl = 10“,lep2 = 107®, ep3 = 107%,
eta = 1073,

REMARK ON ALGORITHM 25

REAL ZEROS OF AN ARBITRARY FUNCTION
(B. Leavenworth, Comm. ACM, November 1960)

RoBERT M. COLLINGE

Burroughs Corporation, Pasadena, California

On attempting to use this algorithm, I discovered the two fol-
fowing errors:
(1) The line following the SWITCH statement should read:
for L := 1 step 1 until n do
(2) The line starting with the label loop: should read:
loop: dd := 1+d ; bi=x0Xd?2— x1 XddfT2
4+ x2 X (dd 4+ d) ;
With these two modifications incorporated the algorithm was
translated into the language of the Burroughs Algebraic Com-
piler and has been used successfully on the Burroughs 220 Com-
puter.

REMARKS ON ALGORITHMS 2 AND 3 (Comm.
ACM, TFebruary 1960), ALGORITHM 15 (Comm.
ACM, August 1960) AND ALGORITHMS 25 AND 26
(Comm. ACM, November 1960)

J. H. WILKINSON

National Physical Laboratory, Teddington.

Algorithms 2, 15, 25 and 26 were all concerned with the cal-
culation of zeros of arbitrary functions by successive linear or
quadratic interpolation. The main limiting factor on the aceuracy
attainable with such procedures is the condition of the method
of evaluating the function in the neighbourhood of the zeros.
It is this condition which should determine the tolerance which is
allowed for the relative error. With a well-conditioned method of
evaluation quite a strict convergence criterion will be met, even
when the function has multiple roots.

For example, a real quadratic root solver (of a type similar to
Algorithm 25) has been used on ACE to find the zeros of triple-

diagonal matrices T having tii = ai, tizni = bipn, tiip =
ciy; - As an extreme case Itook a = a; = --- =8, =0, a=
;= .- =ap=1, an =2, bi=1, ¢; = 0 so that the func-

tion which was being evaluated was x*(x — 1)5(x — 2). In spite
of the multiplicity of the roots, the answers obtained using float-
ing-point arithmetic with a 46-bit mantissa had errors no greater
than 2-%. Results of similar accuracy have been obtained for the
same problem using linear interpolation in place of the quadratic.



COLLECTED ALGORITHMS (cont.)

This is because the method of evaluation wnich was used, the two-
term recurrence relation for the leading principal minors, is a
very well-conditioned method of evaluation. Knowing this, I was
able to set a tolerance of 272 with confidence. If the same function
had been evaluated from its explicit polynomial expansion, then
a tolerance of about 277 would have been necessary and the mul-
tiple roots would have obtained with very low accuracy.

To find the zero roots it is necessary to have an absolute toler-
ance for \ Xry1 — Xr | as well as the relative tolerance condition.
It is undesirable that the preliminary detection of a zero root
should be necessary. The great power of rootfinders of this type
is that, since we are not saddled with the problem of calculating
the derivative, we have great freedom of choice in evaluating the
function itself. This freedom is encroached upon if we frame the
rootfinder so that it finds the zeros of x = f(x) since the true func-
tion x — f(x) is arbitrarily separated into two parts. The formal
advantage of using this formulation is very slight. Thus, in Certi-
fication 2 (June 1960), the calculation of the zeros of x = tan x
was attempted. If the function (—x -+ tan x) were used with a
general zero finder then, provided the method of evaluation was,
for example

X=nr +y

tan x — x = —nr +
cos y
the multiple zeros at x = 0 could be found as accurately as any
of the others. With a slight modification of common sine and co-
sine routines, this could be evaluated as

(siny — y) — yleosy — 1)
14 (cosy — 1)

and the evaluation is then well-conditioned in the neighbourhood
of x = 0. As regards the number of iterations needed, the re-
striction to 10 (Certification 2) is rather unreasonably small.
For example, the direct evaluation of x% — 1 is well conditioned,
but starting with the values x = 2 and x = 1.5 a considerable
number of iterations are needed to find the root x = 1 Similarly
a very large number are needed for Newton’s method, starting
with x = 2. If the time for evaluating the derivative is about the
same as that for evaluating the function (often it is much longer),
then linear interpolation is usually faster, and quadratic inter-
polation much faster, than Newton.

In all of the algorithms, including that for Bairstow, it is use
ful to have some criterion which limits the permissible change
from one value of the independent variable to the next [1]. This
condition is met to some extent in Algorithm 25 by the condition
S84, that abs(fprt) < abs(x2 X 10), but here the limitation is
placed on the permissible increase in the value of the function
from one step to the next. Algorithms 3 and 25 have tolerances on
the size of the function and on the size of the remainders rl and
r0 respectively. They are very difficult tolerances to assign since
these quantities may take very small values without our wishing
to accept the value of x as a root. In Algorithm 3 (Comm. ACM
June 1960) it is useful to return to the original polynomial and to
iterate with each of the computed factors. This eliminates the loss
of accuracy which may occur if the factors are not found in in-
creasing order. This presumably was the case in Certification 3
when the roots of x5 + 7x*+ 5x3 + 6x2 + 3x + 2 = 0 were
attempted. On ACE, however, all roots of this polynomial were
found very accurately and convergence was very fast using single-
precision, but the roots emerged in increasing order. The reference
to slow convergence is puzzling. On ACE, convergence was fast
for all the initial approximations to p and q which were tried.
When the initial approximations used were such that the real
root x = —6.35099 36103 and the spurious zero were found first,

—nr +

25-P2- 0

the remaining two quadratic factors were of lower accuracy,
though this was, of course, rectified by iteration in the original
polynomial. When either of the other two factors was found first,
then all factors were fully accurate even without iteration in the
original polynomial [1].

REFERENCE

1] J. H. WiLkinso~. The evaluation of the zeros of ill-conditioned
polynomials Parts T and I1. Num. Math. 1 (1959), 150-180.



