COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 32

MULTINT

R. Dox FREEMAN JR.

Michigan State University, East Lansing, Michigan

real procedure MULTINT (n, Low, Upp, Funev, s, P, u, w);
value n;
real procedure Low, Upp, Funev; array s, u,
w; integer n;
comment MULTINT will perform a single, double, triple,...,
T.order integration depending on whether n=1, 2,..., T. The
result is:

Upp(D) Upp(2, x1)
MULTINT = [Funev(l, x1) dx Funev(2,x1,%2) dxz ...
Low(1) Low(2, x1)

Funev (X, Xn) dXn
Low(n,Xi,...,Xn-1

The variable of integration is x[j]. j=1 refers to the outermost
integral, j=n, the innermost integral. The code divides each
interval equally into slj] subintervals and performs a P-point
Gaussian integration on each subinterval with weight func-
tions w{k[j]] and abscissas u[k{jl}. P is the size of the arrays of
weight functions and abscissas and must be provided by the
main code along with these arrays.

Since the values x[1], x[2],..., x[n], are stored in an array, a8
are a, b, ¢, d, r, it is necessary to substitute an integer for the
upper bound T of these arrays before the program is executed.
This means, for example, if 3 is substituted for T, then the
procedure will not do a 4th order integral unless it is retrans-
lated with T > 4.

The values of the lower and upper bounds and functions must
of course be specified at the time of use. If each of these con-
stituted a separate procedure, it would require writing and
translating 3n different procedures. This is eliminated by group-
ing them into Low, Upp, and Funev which compute the lower
and upper bounds and value of the functions respectively in
each of the jth integrals. Since these are each essentially a col-
lection of ‘‘subprocedures,” the first statement of each should
be a switch directing the code to the “subprocedure’” which is
used in the jth integral. Note that, for example, Low(3,x) is
formally a function of x[1], x{2],-.., x[T}; this is done merely
because it is more convenient to make Low (j,x) formally a func-
tion of the whole array x for all j. Actually of course Low (3, x)
would be a function of x[1] and x(2] only;

fUpp(n,xl,...,x:l)

begin real array a, b, ¢, d, r, x[1 ‘T,
integer array k, h(l :T]; real f; integer j, m;
for j :=1step 1 until T do

x[j] := 0.0;
m := 1;
rn+1] := din+1] := 1.0;
setup: for j := m step 1 until n do
begin
afj] := Low(j,%);
blj] := UppG.%);
dj] := (- alih/slil;
elj] := alj] + 0.5 X d[j};
xfj] 1= c[i] + 0.5 X d[j] X ullf;
r[j} := 0.0;
hij} := kfj] :=1; end;
ji=1
sum: f := Funev(j,x);

32P1- 0

rfj] o= rlil 4 rli+1) X dh+1 X £ X wik[jll;
if (k{j] < P) then go to labk;
if (h[j] < s{j]) then go to labh;

ji=1-1
if (j = 0) then go to exit;
go to sum;
labh: h(j] := h{G] + 1;
clj] := ali] + (nlil — 0.5) X dljl;
k{j] :=1;
go to initalx;
labk: k[j] := k[j] + 1;
initalx: x[j] := c(j] + 0.5 X d[j] X ulk(jll;

if (j=n) then go to sum;
m = j+1;
go to setup;
exit: MULTINT := r[1] X d[1] X 0.57 n; end

CERTIFICATION OF ALGORITHM 32

MULTINT [R. Don Freeman, Comm. ACM, Feb. 1961]
Hexry C. THACHER, JR.*

Reactor Engineering Div., Argonne National Laboratory,

Argonne, I1L
* Work supported by the U. S. Atomic Energy Commission.

The procedure was transeribed into the ACT-III language for
the LGP-30 computer, and was tested on the integrals:

1 51 pl pl
f f f f klcos w — 7Tu sin u
1) Jo Jo JoJo

— 6u? cos u + udsin u] dw dz dy dz = sin k

where u = kwzyz, and

fl f\/‘ljz—2 j'\/l—ﬂ—vz B dz dy dx
0o Yo 0 I2+y2+(z“k)2
2)

(e t(E e

The ArgoLu procedures for the second integral are:

)

real procedure Low (G,2);5
Low := 0;
real procedure Upp(j,x); comment z= z(3],
z(1);
begin
integer 1;
temp = 1.0;
for i := j—1 step — 1 until 1 do
temp := temp — zl] X zlil;
Upp := sqri{temp)
end;
real procedure Funev(j,z);
comment The real parameter k is global;
Funev := if j < 3 then 10 else l/(z[l])(x[l]+:c[2]><a:[2]+(1[3]—10)
12);
The first integral was tested only with s[j] = 1, and with various
Gaussian formulas for integrals over the interval (—1,+1). Re-
sults were as follows:

i

y=1z2], =

real temp;

COLLECTED ALGORITHMS (cont.)

k x/2 d 3x/2 Vi3
true 1.0000000 0.0000000 —1.0000000 0.0000000
p=2 0.993704 —0.0333603 +0.020166 6.881490
p=3 1.000032 0.0000848 —1.061651 —0.597419
p =4 0.999999 0.0000001 —0.998407 -+0.0027035
p=25 1.000000 —0.0000002 —1.000028 —0.0007857

For the second integral, two values of s = s[1] = s[2] = s[3]
were used, and two values of p. Results were as follows:

k 1/2 2
true 11.46027376 1.10609687
8 1 2 1 2
p=2 5.454460 11.838651 1.0368770 1.1184305

p=3 9.361666 12.408984 1.1343551 1.1094278
The effect of the pole at (0,0,k) is obvious.

For the algorithm to run in any compiler, the semicolon follow-
ing z[T']; in the fourth line above the end of the comment must be
deleted. The array bounds on the arrays r and d must be increased

o{l : T+1].

For a system which permits variable array bounds, the intro-
duction of the integer T appears superfluous. For such a system,
T may be replaced by n throughout with a probable gain in effi-
ciency. For most translators, the presence of undefined elements
in an array will not cause difficulties, provided these elements do
not appear in an expression before they are assigned a value.

The statement “for j := 1 step 1 until 7 do z[j] := 0.0;” is thus
superfluous. The semicolon before the end which precedes the
label “‘sum’’ also appears unnecessary.

In spite of these minor corrections, the algorithm appears to be
extremely convenient for multiple quadratures over arbitrary
regions using the Cartesian product of any explicit one-dimen-
sional formula (and not merely a Gaussian formula) for inte-
grating over the range [—1,1]. If endpoints are used in the formula,
it will, of course, repeat the caleulation for each section of the
range.

REMARKS ON ALGORITHNMI 32 [D1]
MULTINT [R. Don Freeman, Jr.,
(IFeb. 1961), 1006]
AND
CERTIFICATION OF
Thacher, Jr.,
K. S. KoLBia
Data Handling Division, FEuropean Organization for
Nuclear Research (CERN), 1211 Geneva 23, Switzer-
land

KEY WORDS AND PHRASES: numerical integration,
dimensional integration, Gaussian integration

CR CATEGORIES: 5.16

Comm. ACM 4

ALGORITHM 32 [Henry C.
Comm. ACM 6 (Feb. 1963), 69]

multi-

The real procedure MULTINT was corrected according to the
certification. It was then compiled on a CDC 3800 computer and
tested on the second integral given in the certification. It became
apparent that

32-P 2- R1
(i) Equation (2) of the certification should read

f f\/l“ﬂf 1—x2—y? dz dy dx
/122 —1/122 v —") x? + Y+ (z — k)*

L+ k|
= 2 -— k)1
(4 (i) i
It should be noted that the right-hand side of equation (2)
as printed in the certification does not correspond either to the

original limits or to those given above.
(i1) the statement

(2)

Low := 0;
in the real procedure Low should be replaced by

Low := —Upp(j, 2);
(iii) the second line of the for statement in the real procedure
Upp should read

temp = temp — x[i] X z[t];

After making these corrections, it is possible to obtain results
corresponding to a permuted version of the table given in the
certification, which should be replaced by the following:

k 3 2
true 11.46027375 1.10609686

s 1 2 1 2
P =2 5454466 9.361670 1.0368787 1.1184317
P =3 11.83864 12.408983 1.1343568 1.1094204

In addition, since several compilers require specifications, it
would be desirable
(i) to change the last specification in the heading of MULTINT

to read

integer n, P;

(ii) to insert the specifications
integer j;

array T,

in the heading of the real procedures Low, Upp, and Funev.
Some of these additions were necessary in order to ensure
correct results with the compiler used for the tests.

