COLLECTED ALGORITHMS FROM CACM

ALGORITHM 35

SIEVE

T. C. Woop

RCA Digital Computation and Simulation Group, Moores-
town, New Jersey

procedure Sieve (Nmax) Primes: p) ;

integer Nmax; integer array p ;

Sjeve uses the Sieve of Eratosthenes to find all prime
numbers not greater than a stated integer Nmax
and stores them in array p. This array should be
of dimension 1 by entier (2 X Nmax/ fn (Nmax)) ;

begin integer n,i,j ;

comment

pil} :i=1 ; pl2l:=2 ; pBl:=j:=3 ;
for n := 3 step 2 until Nmax do
begin 1:=3

L1: go to if pli] < sqrt (n) then al else a2
al: go to if n/p[i] = n + pli] then bl else b2 ;

b2:1:=141 go to Ll
a2 :pljl:=mn 5 j:=Jj+1 3
bl: end end

CERTIFICATION OF ALGORITHM 35
SIEVE (T. C. Wood, Comm. ACM, March 1961)
P. J. BrownN
University of North Carolina, Chapel Hill, N. C.
SIEVE was transliterated into GAT for the Univac 1105
and successfully run for a number of cases.
The statement:
go to if n/pli] = n + pli] then bl else b2;
was changed to the statement:

go vo if n/p(i] — n + pli] < .5/Nmax then bl else b2;
Roundoff error might lead to the former giving undesired results.

CERTIFICATION OF ALGORITHM 35

SIEVE [T. C. Wood, Comm. ACD . Mar. 1961}

J. 8. HiLLMORE

Elliott Bros. (London) Ltd.,
England

Borehamwood, Herts.,

The statement:
go to if n/pli]l = n + pli] then bl else b2;
was changed to the statement:
go to if (n =+ pli]) X pli] = n then bl else b2;

This avoids any inaccuracy that might result from introducing
real arithmetic into the evaluation of the relation.

The modified algorithm was successfully run using the Elliott
ALcoL translator on the National-Elliott 803.

35-P 1- R1

REMARIKS ON:

ALGORITHM 35 [Al]

Sieve [T. C. Wood, Comm. ACM 4 (Mar. 1961), 151]

ALGORITHM 310 [Al]

PRIME NUMBER GENERATOR 1 [B. A. Chartres,
Comm. ACM 10 (Sept. 1967), 569]

ALGORITHM 311 [Al]

PRIME NUMBER GENERATOR 2 [B. A. Chartres,
Comm. ACM 10 (Sept. 1967), 570]

B. A. Cuartres (Reed. 13 Apr. 1967)
Computer Science Center, University of Virginia,
Charlottesville, Virginia

The three procedures Sieve(m,p), sievel(m,p), and sieve2(m,p),
which all perform the same operation of putting the primes less
than or equal to m into the array p, were tested and compared for
speed on the Burroughs B5500 at the University of Virginia. The
modification of Sieve suggested by J. S. Hillmore [Comm. ACM &
(Aug. 1962), 438] was used. Tt was also found that Sieve could be
speeded up by a factor of 1.95 by avoiding the repeated evaluation
of sqrt(n). The modification required consisted of declaring an
integer variable s, inserting the statement s := sqrt(n) immedi-
ately after ¢ := 3, and replacing pli]<sgri(n) by plil<s.

The running times for the computation of the first 10,000 primes
were:

Sieve (Algorithm 35) 845 sec
Sieve (modified) 434 sec
stevel 220 sec
steve2 91 sec

The time required to compute the first k primes was found to be,
for each algorithm, remarkably accurately represented by a power
law throughout the range 500 < k < 50,000. The running time of
Sieve varied as k9, that of sievel as k%, and that of sieve2 as
k%, Thus the speed advantage of sieve2 over the other algorithms
increases with increasing k. However, it should be noted that
sieve2 took approximately 33 minutes to find the first 100,000
primes, and, if the power law can be trusted for extrapolation past
this point (there is no reason known why it should be), it would
take about 12 hours to find the first million primes.



