COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 58

MATRIX INVERSION

DoxaLp COHEN

Burroughs Corporation, Pasadena, Calif.

procedure invert (n) array: (a);
comment matrix inversion by Gauss-Jordan elimination;
valuen;
array a; integern;
begin
array b, ¢ [1:n]; integeri,j, k, £, p;
integer array z {1:n];
for j := 1 step 1 until ndo z[j] := i;
fori := 1 step 1 until n do begin
k:=1i; y:=al,il; €:=i—1;
forj := p step 1 until n do begin
w := ali,j]; if abs(w) > abs(y) then begin
k :=j; y := w end end;
for j := 1 step 1 until n do begin

p:i=1+1;

I

cljl := alj, k; afj, k]l := alj,i};
alj,i] := —clil/y; blj] := ali, j] := afi, jl/y end ;
ali,i] ;= 1/y; j:=zlil; 2] :=zlk]; zkl:=] ;

for k := 1 step 1 until ¢, p step 1 until ndo
for j := 1 step 1 until ¢, p step 1 until ndo
alk,j] := alk,i] — b{j] X c[k] end; £:=0 ;
back: £:= £+ 1; k:=3z[f]; if{ < nthen begin
= { while k # j do begin
1 step 1 until n do begin
w = afj,i]; afj,i] = alk,il;
go to back end
end invert.

alk,i] ;= wend ;

CERTIFICATION OF ALGORITHM 58

MATRIX INVERSION (Donald Cohen, Comm. ACM 4,
May 1961)

RicHaRD A. CONGER

Yalem Computer Center, St. Louis University, St.
Louis, Mo.

Invert was hand-coded in ForTran for the IBM 1620. The
following corrections were found necessary:

The statement ax,; := aki — b; X cx should be

ak,j := ak.j — bj X ¢k

The statement go to back should be changed to

:=i; go to back

1:=2x; 2Zx:= 2j; Zj

After these corrections were made, the program was checked by
inverting a 6 X 6 matrix and then inverting the result. The second
result was equal to the original matrix within round-off.

58-P1- 0

CERTIFICATION OF ALGORITHM 58

MATRIX INVERSION [Donald Cohen, Comm. ACM,
May, 1961]

Ricuarp GEORGE™

Particle Accelerator
Argonne, I11.

Div., Argonne National Lab.,

* Work supported by the U. 8. Atomic Energy Commission.

This procedure was programmed in ForRTRAN and reduced to
machine code mechanically. It was run on the Argonne-built com-
puting machine, GEoRrGE. A floating-point routine was used which
allows maximum accuracy to 31 bits.

There are a number of errors of various types:

(1) There are eight begin’s and only seven end’s.
(2) The line

alk, j] := alk, 7] — b[j] X clk] end;
should be
alk, 71 := alk, 7] — dlj] X cl[k]

(3) The permutation of rows of the inverted matrix and permu-
tation of elements of the integer array z must be carried out simul-
taneously. This algorithm fails to do this, and consequently the
‘matrix at the time of exit from the procedure is left in a permuted
condition.

(4) The algorithm permits the statement

k= z[l;

end;

to be executed even though the declarations place an upper limit
of n on the integer array 2, and the test for I £ n has not yet been
made. Obviously, Mr. Cohen’s compiling system would allow an
out-of-bounds array look-up. One could easily incorporate into an
ALcoL compiler a guard against such illicit array references, and
therefore the published algorithm might be considered machine
dependent.

(5) This algorithm requires 3n? divisions, most of which are un-
necessary. By inserting the statement

y = 1.0/y;

at the proper place, one may accomplish the obvious economy
of reducing this to only n divisions plus 2rn? multiplications.

(6) If a matrix should be singular (or nearly so), some pivot
element will be zero (or very small), and a test should be made,
with provision for a jump to ALARM, a non-local label.

(7) The identifiers w and y should be declared within this pro-
cedure, to avoid trouble.

(8) This algorithm omits calculation of the determinant of the
matrix. This could be computed with very little extra effort.

The revised algorithm was then tested on the LGP-30 com-
puter, using ALGoL-30, a small subset of ArcoL. Within the re-
strictions of this subset, the program worked satisfactorily on test
matrices.

COLLECTED ALGORITHMS (cont.)

REMARK ON ALGORITHM 58

MATRIX INVERSION [Donald Cohen, Comm. ACM,
May, 1961]

GEORGE STRUBLE

University of Oregon, Eugene, Oregon

For the last seven lines, beginning with alk, j] := alk, 7], substi-
tute:
alk, 7] := alk, j] — bls] X c[k] end;
l:=0;
back: [:=I+1;
again: k := z[l];
if £ # [then

begin for i := 1 step 1 until n do
begin w := all, 1];

all, 1] := alk, 7};
alk, 7] := w end;
z|l] 1= z[k];
zlk] =k

go to again end;
else if [# n go to back
end invert

REMARK ON ALGORITHM 58

MATRIX INVERSION [D. Cohen, Comm. ACM,
May 61]

PETER G. BEHRENZ

Matematikmaskinnminden, Box 6131, Stockholm 6,
Sweden

tnvert was run on Facit EDB using Facit-Avcon 1. Some
changes in the procedure had to be made:

1. y and w had to be declared in the procedure-body as real
y’ w;

2. The last part of the procedure starting with 7 := 0; which
should interchange the matrix rows did not work correctly, even
with the corrections proposed by R. A. Conger [Comm. ACM,
June 62]. We propose the following code:

for [:= 1 step 1 until n do begin
k1= z[l]; for j:= 1 whilek 5 j do begin

for i := 1 step 1 until » do begin
w = alj, i]; alj, 1} 1= alk, 1}; alk, 7] : = w end;
i 1= zlk]; zlk]:= z[j]; k := z[j] := 7 end end end inver!

If the matrix @ is singular, the value of the pivot element y
will once be zero or very nearly zero and division by zero would
occur in the course of the calculation. It would therefore be
advantageous to introduce an empirical tolerance parameter
epsilon into the procedure.

To calculate the determinant of the matrix a it is only necessary
to put three more statements into the code. With these augmenta-
tions invert should read:

procedure invert (n, a, epstlon, determinant);
value n, epsilon; real epsilon, determinant;
array a; integer n;
begin real y, w; integer i, j, k, [, p;
array b, c¢[l:n]; integer array z[l:n];
determinant 1= 1;
followed by the same code as*before until:
y := w end end;
determinant 1= y X determinant;
if k = i then determinant : = —determinant;
if abs (y) < epsilon then go to singular;
followed by the same code as before with the changes mentioned
in the certification by R. A. Conger [Comm. ACM, June 62] and

the changes given above.

in the main program.

58-P2- 0

singular should be a nonlocal label

