COLLECTED ALGORITHMS FROM CACM

ALGORITHM 61

PROCEDURES TOR RANGE ARITHMETIC
Avvan Gis*

University of Alberta, Calgary, Alberta, Canada

begin

procedure RANGESUM (a, b, ¢, d, e, f);

real a,b,c,d, e, f;
comment The term ‘“‘range number”” was used by P. 8. Dwyer,
Linear Computations (Wiley, 1951). Machine procedures for
range arithmetic were developed about 1958 by Ramon Moore,
“Automatic Error Analysis in Digital Computation,” LMSD
Report 48421, 28 Jan. 1959, Lockheed Missiles and Space Divi-
sion, Palo Alto, California, 59 pp. If a £ x £ bandec £y = d,
then RANGESUM yields an interval [e, f] such thate = (x + y)
< {. Because of machine operation (truncation or rounding) the
machine sums a + ¢ and b + d may not provide safe end-points
of the output interval. Thus RANGESUM requires a non-local
real procedure ADJUSTSUM which will compensate for the
machine arithmetic. The body of ADJUSTSUM will be de-
pendent upon the type of machine for which it is written and so
is not given here. (An example, however, appears below.) It
is assumed that ADJUSTSUM has as parameters real v and w,
and integer i, and is accompanied by a non-local real procedure
CORRECTION which gives an upper bound to the magnitude
of the error involved in the machine representation of a number.
The output ADJUSTSUM provides the left end-point of the
output interval of RANGESUM when ADJUSTSUM is called
with i = —1, and the right end-point when called with i = 1.
The procedures RANGESUB, RANGEMPY, and RANGEDVD
provide for the remaining fundamental operations in range
arithmetic. RANGESQR gives an interval within which the
square of a range number must lie. RNGSUMC, PNGSUBC,
RNGMPYC and RNGDVDC provide for range arithmetic with
complex range arguments, i.e. the real and imaginary parts
are range numbers;
begin

e := ADJUSTSUM (a, c, —1);

f := ADJUSTSUM (b,d, 1)
end RANGESUM;
procedure RANGESUB (a,b,c,d,e,f);

real a,b,c,d,e,f;
comment RANGESUM is a non-local procedure;
begin

RANGESUM (a, b, —d, —c, e, f)
end RANGESUB;
procedure RANGEMPY (a, b, ¢, d, e, f);
real a, b, c, d, e, f;
comment ADJUSTPROD, which appears at the end of this
procedure, is analogous to ADJUSTSUM above and is a non-
local real procedure. MAX and MIN find the maximum and
minimum of a set of real numbers and are non-local;
begin
real v, w;
if a<0Acz=0then
1: begin
vi=c¢; C
end 1;
if a=0 then

I=a4a; a.=V,;

61-P 1-

2: begin
if ¢ = 0 then
3:begin
e:=aXe;f:=bXd;goto8
end 3;
e:=hbXe;
ifd = 0 then
4: begin
f:=bXd; goto8
end 4;
fi=aXd; goto8
5: end 2;
ifb > 0 then
6: begin
ifd > 0 then
begin
e:= MIN(a X d,b X ¢);

f:= MAX(a X ¢,b X d); goto8
end 6;
e:=bXec; f:=aXc; goto8
end 5;
f:=aXe;
ifd £ 0then
7: begin
e:=bXd; goto8
end 7;
e:=a X d;
8: e := ADJUSTPROD (e, —1);

f := ADJUSTPROD (f, 1)
end RANGEMPY;
procedure RANGEDVD (a, b, c,d, e, f);
real a, b, c, d, e, f;
comment If the range divisor includes zero the program
exists to a non-local label “zerodvsr’’. RANGEDVD assumes a
non-local real procedure ADJUSTQUOT which is analogous
(possibly identical) to ADJUSTPROD;
begin
ifc <0 A dz=0then go to zerodvsr;
ifc < 0then

1: begin
ifb > 0then
2: begin
e:= b/d; goto3
end 2;
:=Db/c;
3: ifa = 0 then
4: begin
f:= a/c; go to 8
end 4;
f:=a/d; goto8
end 1;
if a < 0 then
5. begin
e:=a/c; gotob
end 5;
e:= a/d;
6: if b > 0 then
7: begin
f:=Db/c; goto8
end 7;

f:=b/d;

0

COLLECTED ALGORITHMS (cont.)

8: e := ADJUSTQUOT (e, —1); t:= ADJUSTQUOT (f,1)
end RANGEDVD;
procedure RANGESQR (a, b, e, f);
real a, b, e, f;
comment ADJUSTPROD is a non-local procedure;
begin
if a < 0 then

1: begin
if b < 0 then
2: begin
e:=hXb; f:=aXa; goto3
end 2;
e:=0; m:=MAX(ab); f:=mXm; goto3
end 1;

e:=aXa; f:=DbXb;
3: ADJUSTPROD (e, —1);
ADJUSTPROD (f, 1)
end RANGESQR;
procedure RNGSUMC (al,, aR, bL, bU, cL, ¢R, dL, dU, el,,
eR, fL, fU);
real al,, aR, bL, bU, cL, R, dL, dU, el eR, fL, fU;
comment Rangesum is a non-local procedure;
begin
RANGESUM (aL, aR, e, cR, el,; eR);
RANGESUM (bL, bU, dL, dU, fL, {U)
end RNGSUMC;
procedure RNGSUBC (al, aRR, bL, bU, cL, c¢R, dL, dU, eL,
eR, fL, fU);
real al, aR, bL, bU, cL, cR, UL, dU, eL, eR, fL, {U;

comment RNGSUMC is a non-local procedure;

begin
RNGSUMC (al,, aR, bL, bR, —cR, —cL, —dU, —dL, eL, eR,
fL, fU)

end RNGSUBC;
procedure RNGMPYC (al, aR, bL, bU, cL, cR, dL, dU, ef,,
eR, fL, fU);

real al.. aR, bL, bU, cL, eR, dL, dU, eL, eR, L, fU;
comment RANGEMPY, RANGESUB, and RANGESUM are
non-local procedures;
begin

real L1, R1, L2, R2, L3, R3, L1, R4;

RANGEMPY (al, aR, cL, ¢R, L1, R1);

RANGEMPY (bL, bU, dL, dU, L2, R2);

RANGESUB (L1, R1, L2, R2, eL, eR);

RANGEMPY (al, aR, dL, dU, L3, R3);

RANGEMPY (bL, bU, cL, cR, L4, R4);

RANGESUM (L3, R3, 14, R4, {fL, fU);
end RNGMPYC;
procedure RNGDVDC (al, aR, bL, bU, c¢L, cR, dL, dU, el,,
eR, fL, fU);

real aL, aR, bL, bU, cL,, cR, dL, dU, eL,, eR, fL, fU;
comment RNGMPYC, RANGESQR, RANGESUM, and
RANGEDVD are non-local procedures;
begin

real L1, R1, L2, R2, L3, R3, L4, R4, L5, R5;

RNGMPYC (aL, aR, bL, bU, cL, ¢R, —dU, —dL, L1, R1, L2,

R2);

RANGESQR (cL, cR, L3, R3);

RANGESQR (dL, dU, 14, R4);

RANGESUM (L3, R3, L4, R4, L5, R5);

RANGEDVD (L1, R1, L5, R5, eL,, eR);

RANGEDVD (L2, R2, L5, R5, fL, {U)
end RNGDVDC

end

61-P2- 0

EXAMPLE

real procedure CORRECTION (p); real p;

comment CORRECTION and the procedures below are in-
tended for use with single-precision normalized floating-point
arithmetic for machines in which the mantissa of a floating-point
number is expressible to s significant figures, base b. Limitations
of the machine or requirements of the user will limit the range of
p to b™ = | p| < be*! for some integers m and n. Appropriate
integers must replace s, b, m and n below. Signal is a non-local
label. The procedures of the example would be included in the
same block as the range procedures above;

begin

integer w;

for w : = m step 1 until n do
1: begin

if (b Tw = abs (p)) A (abs (p) < b T (w+ 1)) then
2: begin
CORRECTION :=b 7 (w+1—s); go toexit
end 2
end 1;
go to signal;

exit: end CORRECTION;
real procedure ADJUSTSUM (w, v,1); integer i;

real w, v;
comment ADJUSTSUM exemplifies a possible procedure for use
with machines which, when operating in floating point addition,
simply shift out any lower order digits that may not be used. No
attempt is made here to examine the possibility that every digit
that is dropped is zero. CORRECTION is a non-local real pro-
cedure which gives an upper bound to the magnitude of the error
involved in the machine representation of a number;
begin

real r, cw, cv, cr;

T!= W+ V;

if w =0\ v =0 then go to 1;

ew 1= CORRECTION (w);

cv := CORRECTION (v);

er : = CORRECTION (r);

if cw = ev A cr £ cw then go to 1;

if sign (i X sign (w) X sign (v) X sign (r)) = —1 then go to 1;

ADJUSTSUM :=r 4+ i X MAX (ew, cv, cr); go to exit;
1: ADJUSTSUM :=r;
exit: end ADJUSTSUM;
real procedure ADJUSTPROD (p,i); real p; integeri;
comment ADJUSTPROD is for machines which truncate when
lower order digits are dropped. CORRECTION is a non-local real
procedure;

begin
if p X1 £ 0 then
1: begin
ADJUSTPROD := p; go to out
end 1;

ADJUSTPROD := p + i X CORRECTION (p);
out: end ADJUSTPROD;
comment Although ordinarily rounded arithmetic is preferable
to truncated (chopped) arithmetic, for these range procedures
truncated arithmetic leads to closer bounds than rounding does.

* These procedures were written and tested in the Burroughs
220 version of the ALGOL language in the summer of 1960 at
Stanford University. The typing and editorial work were done
under Office of Naval Research Contract Nonr-225(37). The author
wishes to thank Professor George E. Forsythe for encouraging
this work and for assistance with the syntax of ALGOL 60.

