ALGORITHM 62

A SET OF ASSOCIATE LEGENDRE POLYNOMIALS OF THE SECOND KIND*

John R. Herndon

Stanford Research Institute, Menlo Park, California

comment This procedure places a set of values of $Q_n^{\,m}(x)$ in the array Q[] for values of n from 0 to nmax for a particular value of m and a value of x which is real if ri is 0 and is purely imaginary, ix, ortherwise. R[] will contain the set of ratios of successive values of Q. These ratios may be especially valuable when the $Q_n^{\,m}(x)$ of the smallest size is so small as to underflow the machine representation (e.g. 10^{-69} if 10^{-51} were the smallest representable number). 9.9×10^{45} is used to represent infinity. Imaginary values of x may not be negative and real values of x may not be smaller than 1.

Values of $Q_n^m(x)$ may be calculated easily by hypergeometric series if x is not too small nor (n - m) too large. $Q_n^m(x)$ can be computed from an appropriate set of values of P_n^m(x) if x is near 1.0 or ix is near 0. Loss of significant digits occurs for x as small as 1.1 if n is larger than 10. Loss of significant digits is a major difficulty in using finite polynomial representations also if n is larger than m. However, QLEG has been tested in regions of x and n both large and small;

procedure QLEG(m, nmax, x, ri, R, Q); value m, nmax, x, ri;

```
real m, nmax, x, ri; real array R, Q;
begin real t, i, n, q0, s;
        n := 20;
        if nmax > 13 then
             n := nmax + 7;
         if ri = 0 then
             begin if m = 0 then
                               Q[0] := 0.5 \times \log((x + 1)/(x - 1))
                      begin t := -1.0/\operatorname{sqrt}(x \times x - 1);
                               q0 := 0;
                               Q[0] := t;
                               for i := 1 step 1 until m do
                                  begin s := (x+x)\times(i-1)\times t
                                  \times Q[0] + (3i - i \times i - 2) \times q0;
                                  q0 := Q[0];
                                  Q[0] := s \text{ end end};
             if
                      x = 1 then
                      Q[0] := 9.9 \uparrow 45;
             R[n+1] := x - \operatorname{sqrt}(x \times x - 1);
                      i := n \text{ step } -1 \text{ until } 1 \text{ do}
                      R[i] := (i + m)/((i + i + 1) \times x
                      +(m-i-1) \times R[i+1];
             go to the end:
         if m = 0 then
             begin if x < 0.5 then
                      Q[0] := \arctan(x) - 1.5707963 \text{ else}
                      Q[0] := -\arctan(1/x)end else
             begin t := 1/\operatorname{sqrt}(x \times x + 1);
             q0 := 0;
             Q[0] := t;
                      i := 2 step 1 until m do
                      begin s := (x + x) \times (i - 1) \times t \times Q[0]
```

 $+(3i + i \times i - 2) \times q0;$

```
q0 := Q[0];
                       Q[0] := s \text{ end end};
         R[n+1] := x - \operatorname{sqrt}(x \times x + 1);
              for i := n \text{ step } - 1 \text{ until } 1 \text{ do}
                   R[i] := (i + m)/((i - m + 1) \times R[i + 1]
                    -(i + i + 1) \times x);
              for i := 1 step 2 until nmax do
                   R[i] := -R[i];
the: for i := 1 step 1 until nmax do
                   Q[i] := Q[i - 1] \times R[i]
end QLEG;
```

* This procedure was developed in part under the sponsorship of the Air Force Cambridge Research Center.

REMARK ON ALGORITHM 62

A SET OF ASSOCIATE LEGENDRE POLYNOMIALS OF THE SECOND KIND (John R. Herndon, Comm. ACM 4 (July, 1961))

John R. Herndon

Stanford Research Institute, Menlo Park, California

In regard to Algorithm 62 in Communications of the ACM, two errors were found:

The 14th line of the procedure

for i := 1 step 1 until m do should read

for i := 2 step 1 until m do

The 35th line

$$+(3i - iXi - 2)Xq0$$
should read
$$+(3i - i \times i - 2) \times q0$$

The procedure QLEC was developed from the standard recurrence formula

 $(n+m-1)Q_{n-2}^m = (2n-1)\cdot x\cdot Q_{n-1}^m - (n-m)Q_n^m.$ Invert and multiply by $(n + m - 1)Q_{n-1}^m$.

$$\frac{Q_{n-1}^m}{Q_{n-2}^m} = \frac{(n+m-1)}{(2n-1)\cdot x - (n-m){Q_n}^m/{Q_{n-1}^m}},$$

or

$$R_{n-1}^m = \frac{(n+m-1)}{(2n-1)\cdot x - (n-m)R_n^m}.$$

Analysis (and testing) shows that, for n large, this infinite continued fraction need only be carried to about eight terms for eightdigit accuracy if the final term is evaluated with the asymptotic value derived by setting

$$R_{n-1}^m = R_n^m, \lim_{n \to \infty} R_n^m = x \pm \sqrt{x^2 - 1},$$

the minus sign being chosen since in general $Q_n^m < Q_{n-1}^m$. The formulas pertaining to purely imaginary parameters follow readily. The value of

$$Q_0^0(x) = \frac{1}{2} \log_e \frac{x+1}{x-1},$$

while

$$Q_{10}(x) = x \cdot Q_{00}(x) - 1,$$

and

$$Q_{0^{1}}(x) = \frac{-1}{\sqrt{x^{2}-1}}.$$

Other values are derived using the ratios $R_{n}^{m}(x)$ and/or the recurrence formula

$$Q_{\mathbf{n}^m} = -\frac{2(m-1)x}{\sqrt{x^2-1}}\,Q_{\mathbf{n}}^{m-1} + (n-m+2)(n+m-2)Q_{\mathbf{n}}^{m-2}.$$

The derivation of the expression for $Q_0{}^{\scriptscriptstyle 0}(ix)$ is not trivial and proceeds as follows:

$$i \cdot Q_0{}^0(ix) = \frac{1}{2} \log_e \frac{ix+1}{ix-1} = \frac{1}{2} \log_e \left[-\frac{x^2-1}{x^2+1} + \frac{2x}{x^2+1} \right]$$

$$e^{a+ib} = e^a \cdot e^{ib} = e^a \cos b + i \sin b.$$

Thus

$$\tan b = \frac{-2x}{1 - x^2}$$

and

$$Q_0^0(ix) = (\arctan x - \pi/2)i.$$