```
ALGORITHM 74
CURVE FITTING WITH CONSTRAINTS
J. E. L. Peck,
University of Alberta, Calgary, Alberta, Canada
 procedure Curve fitting (k,a,b,m,x,y,w,n,alpha,beta,s,sgmsq,x0,
     gamma,c,z,r);
 comment This procedure finds, by the method of least squares,
      the polynomial of degree n, k \le n < k+m, whose graph con-
       tains (a_1, b_1), \dots, (a_k b_k) and approximates (x_1, y_1), \dots,
       (x_m, y_m), where w_i is the weight attached to the point (x_i, y_i).
       The details will be found in the reference cited below, where a
       similar notation is used. A nonlocal label "error" is assumed;
      value a, x, y, w; integer k, m, n, r; real x0, gamma; array
            a, b, x, y, w, alpha, beta, s, sgmsq, c, z;
       begin integer i, j; array w1[1:k]; real p, f, lambda;
       comment We shall first define several procedures to be used
            in the main program, which begins at the label START;
 procedure Evalue (x, nu);
 comment This procedure evaluates f = s_0p_0 + s_1p_1 + \cdots + s_np_n + s_n
       s_{\nu}p_{\nu}, where p_{-1}(x) = 0, p_{0}(x) = 1, \beta_{0} = 0 and p_{i+1}(x)
       = (x - \alpha_i)p_i(x) - \beta_i p_{i-1}(x), i = 0, 1, \dots, \nu-1. The value of
       p_{\nu}(x) remains in p;
       real x; integer nu;
      begin real p0, temp; integer i; p0 := 0; p := 1; f := s[0];
 for i := 0 step 1 until nu-1 do
       begin temp := p;
       p := (x-alpha[i]) \times p-beta[i] \times p0;
       p0 := temp; f := f + p \times s[i+1] end i
 end Evalue;
  procedure Coda (n, c);
 comment This procedure finds the c's when c_0 + c_1x + \cdots + c_nx + \cdots + c_n
       c_n x^n = s_0 p_0(x) + \cdots + s_n p_n(x);
       integer n; array c;
       begin integer i,r; real t1,t2; array pm,p[0:n];
 for r := 1 step 1 until n do
       e[r] := pm[r] := p[r] := 0;
 pm[0] := 0; p[0] := 1; c[0] := s[0];
 for i := 0 step 1 until n-1 do
       begin t2 := 0;
       \mathbf{for}\ r:=0\ \mathbf{step}\ 1\ \mathbf{until}\ i{+}1\ \mathbf{do}
             begin t1 := (t2 - alpha[i] \times p[r] - beta[i] \times pm[r])/lambda;
              t2 := pm[r] := p[r]; p[r] := t1;
             c[r] := c[r] + t1 \times s[i+1]end r
        end i
  end Coda;
  procedure GEFYT (n,n0,x,y,w,m);
  comment This is the heart of the main program. It computes
        the \alpha_i, \beta_i, s_i, \sigma_i^2, using the method of orthogonal polynomials, as
        described in the reference;
       integer n,n0,m; array x,y,w;
        begin real dsq,wpp,wpp0,wxpp,wyp,temp;
  integer i,j,freedom; array p,p0[1:m]; boolean exact;
  if n-n\theta > m \lor n < n\theta then go to error;
  beta[n0] := dsq := wpp := 0; exact := n-n0 \ge m-1;
  for j := 1 step 1 until m do
        begin p[j] := 1; p0[j] := 0; wpp := wpp + w[j];
        if \neg exact then dsq := dsq + w[j] \times y[j] \times y[j] end initialise;
```

```
for i := n0 step 1 until n do
 \mathbf{begin} \ \text{freedom} \ := \ m-1-(i-n0) \, ; \quad wyp \ := \ wxpp \ := \ 0 \, ;
  for j := 1 step 1 until m do
    begin temp := w[j] \times p[j];
   if i < n then wxpp := wxpp + temp \times x[j] \times p[j];
    if freedom \geq 0 then wyp := wyp + temp \times y[j] end j;
  if freedom \geq 0 then s[i] := wyp/wpp;
 if \neg exact then begin dsq := dsq - s[i] \times s[i] \times wpp;
 sgmsq[i] := dsq/freedom end if;
 if i < n then begin alpha[i] := wxpp/wpp; wpp0 := wpp;
  wpp := 0;
  for j := 1 step 1 until m do
    begin temp := (x[j]-alpha[i]) \times p[j] - ceta[i] \times p0[j];
    wpp := wpp + w[j] \times temp \times temp;
    p0[j] := p[j]; p[j] := temp end j;
  beta[i+1] := wpp/wpp0 end if
  end i
end GEFYT;
    START: for j := 1 step 1 until k do
begin w1[j] := 1; a[j] = (a[j]-x0)/gamma end j;
GEFYT (k,0,a,b,w1,k);
comment This finds the polynomial of degree k-1 whose graph
  contains (a_1,b_1), \dots, (a_k,b_k) supplying the \alpha_i,\beta_i,s_i, 0 \le i \le k;
  begin real rho; rho := 0;
for j := 1 step 1 until m do
  begin rho := rho + w[j];
  x[j] := (x[j] - x0)/gamma end j; rho := m/rho;
comment The factor \rho is used to normalize the weights. We shall
  now put s_k = 0 in order to evaluate p_k(x) and the polynomial of
  degree k-1 simultaneously;
s[k] := 0;
for j := 1 step 1 until m do
  begin Evalue (x[j],k);
  if p = 0 then go to error;
  y[j] := (y[j] - f)/p;
  w[j] := w[j] \times p \times p \times rho \text{ end } j
comment We have now normalized the weights and adjusted
  the weights and ordinates ready for the least squares approxi-
  mation;
GEFYT (n,k,x,y,w,m);
\textbf{comment} \quad \text{The coefficients } \alpha_i, \beta_i, \quad 0 \leq i < n, \text{ and } s_i, \quad 0 \leq i \leq n
  are now ready. The polynomial may be evaluated for x = z_1, z_2,
  ..., z<sub>r</sub>, but the variable must be adjusted first. Note that we
  may evaluate the best polynomial of lower degree by decreas-
  ing n;
  begin real x;
for j := 1 step 1 until r do
  \mathbf{begin} \ x := (z[j]-x0)/gamma;
  Evalue (x,n); comment the values of z_i and f should now be
    printed; end j;
comment We may now adjust the coefficients for scale and then
  find the coefficients of the power series c_0 + c_1x + \cdots + c_nx^n =
  s_0p_0(x) + \cdots + s_np_n(x);
for i := 0 step 1 until n-1 do
  begin alpha[i] := alpha[i] \times gamma + x0;
  beta[i] := beta[i] × gamma end i; lambda := gamma;
Coda (n,c);
comment We may now re-evaluate the polynomial from the
  power series;
```

for j := 1 step 1 until r do

```
begin x := z[j]; f := c[n];
for i := n-1 step -1 until 0 do
    f := f × x + c[i];
comment the values of x and f should now be printed; end j
end x
end Curve fitting
    Reference: Peck, J. E. L. Polynomial curve fitting with
constraint, Soc. Indust. Appl. Math. Rev. (1961).
```

CERTIFICATION OF ALGORITHM 74
CURVE FITTING WITH CONSTRAINTS [J. F. Peck, Comm. ACM, Jan. 62]
KAZUO ISODA

Japan Atomic Energy Research Institute, Tokai, Ibaraki, Japan

Algorithm 74 was hand-compiled into SOAP IIa for the IBM 650 and run successfully with no corrections except the case in which the origin (0,0) are given as both a constraint and a sample.