COLLECTED ALGORITHMS FROM CACM

ALGORITHM 74

CURVE FITTING WITH CONSTRAINTS
J. E. L. PEck,

University of Alberta, Calgary, Alberta, Canada

procedure Curve fitting (k,a,b,m,x,y,w,n,alpha beta,s,sgmsq,x0,
gamma,c,z,r);
comment This procedure finds, by the method of least squares,
the polynomial of degree n, k < n < k+4m, whose graph con-
tains (a1, b+, ---, (axbx) and approximates (x1, yi), ---,
(Xm, ¥Ym), where w; is the weight attached to the point (x;, yi).
The details will be found in the reference citad below, where a
similar notation is used. A nonlocal label ‘“‘error’’ is assumed;
value a, X, y, w; integer k, m, n, r; real x0, gamma; array
a, b, x,y, w, alpha, beta, s, sgmsq, ¢, z;
begin integer i, j; array wl[l:k]; real p,f, lambda;
comment We shall first define several procedures to be used
in the main program, which begins at the label STXRT;

procedure Evalue (x, nu);
comment This procedure evaluates f = s¢py + sip1 + <+ +
s,py, where pa(x) = 0, po(x) =1, B = 0 and piu(x)
= (x — ap)pi(x) — Bipina(x), 1 =0,1,--- , v—1. The value of
p»(x) remains in p;
real x; integer nu;
begin real p0, temp; integeri; p0:=0; p:=1; f:=s[0];
fori := 0 step 1 until nu—1 do
begin temp := p;
p := (x—alphali]) X p—betali] X p0;
p0 := temp; f :=f+ p X sli+1]end i
end Evalue;

procedure Coda (n, ¢);
comment This procedure finds the ¢’s when ¢y 4+ e1x + --- +
caX® = 8oPo(X) + -+ + 8aPa(X);
integer n; array C;
begin integeri,r; real tl,t2; arraypm,p[0:n];
for r := 1 step 1 until n do
¢[r] := pmlr] := p[r] := 0;
pm[0] := 0; p[0] :=1; c[0] := s[0];
for i := 0 step 1 until n—1 do
begin t2 := 0;
forr := 0 step 1 until i+1 do
begin t1 := (t2—alpha[i].X p[r]—betali] X pm[r])/lambda;
t2 := pm[r] := p[r]; plr] := t1;
c[r] := ¢[r] + t1 X s[i+1jend r
end i
end Coda;

procedure GEFYT (n,n0,x,y,w,m);

comment This is the heart of the main program. It computes
the «;,8:,8i,0:, using the method of orthogonal polynomials, as
described in the reference;
integer n,n0,m; array X,y,w;
begin real dsq,wpp,wpp0,wxpp,wyp,temp;

integer i,j,freedom; array p,p0{l1:m]; boolean exact;

if n—nf > m V n < n0 then go to error;

beta[n0] := dsq := wpp := 0; exact := n—n0 > m—1;

for j := 1step 1 until m do
begin p[j] := 1; pO[j] := 0; wpp := wpp + w(j];
if — exact thendsq := dsq + w[j] X y[j] X y[j] end initialise;

I

74-P 1- 0

for 1 := nu step 1 until n do
begin freedom := m—1-(i—n0); wyp := wxpp := 0;
for j := 1 step 1 until m do
begin temp := w(j] X p[jl;
if i < n then wxpp := wxpp + temp X x[j] X p[jl;
if freedom > 0 then wyp := wyp + temp X y[j] end j;
if freedom > 0 then s[i] := wyp/wpp;
if — exact then begin dsq := dsq — s[i] X s[i] X wpp;
sgmsqli] := dsq/freedom end if;
if i < n then begin alphali] := wxpp/wpp; wpp0 := wpp;
wpp := 0;
for j := 1 step 1 until m do
begin temp := (x[j]—alphali]) X p[j]l — “<ta[i] X pO[j];
wpp := wpp + w[j] X temp X temp;
pO[j] := plil; plil := temp end j;
betali+1] := wpp/wpp0 end if
end i
=nd GEFYT;

START: forj := 1step 1 until k do

begin w1[j] :=1; a[j] = (a[j]—x0)/gamma end j;

GEFYT (k,0,a,b,wl k);

comment This finds the polynomial of degree k—1 whose graph
contains (a1,b1),- -, (ar,br) supplying the «;,8i,8;, 0<1i< k;
begin real rho; rho := 0;

for j := 1 step 1 until m do
begin rho := rho + w{j];
x[j] := (x[j] — x0)/gamma end j; rho := m/rho;

comment The factor pis used to normalize the weights. We shall
now put sk = 0 in order to evaluate px(x) and the polynomial of
degree k—1 simultaneously;

s[k] := 0;

for j := 1 step 1 until m do
begin Evalue (x[j],k);
if p = O then go to error;
ylil == 01 = 0)/p;
wij] ;= w[j] X p X p X thoend j

end rho;

comment We have now normalized the weights and adjusted
the weights and ordinates ready for the least squares approxi-
mation;

GEFYT (n,k,x,y,w,m);

comment The coefficients a;,8;, 0 <i<n,ands;, 0<i<n
are now ready. The polynomial may be evaluated for x = z1,2,
...z, but the variable must be adjusted first. Note that we
may evaluate the best polynomial of lower degree by decreas-
ing n;
begin real x;

for j := 1 step 1 until r do
begin x := (z[j]—x0)/gamma;
Evalue (x,n); comment the values of z; and f should now be

printed; end j;

comment We may now adjust the coefficients for scale and then
find the coefficients of the power series ¢y + c1x + -+ + €x* =
SoPo(X) + +++ + 8aPa(X);

fori:= 0step 1 untiln—1do
begin alphali] := alphali] X gamma + x0;
beta[i] := beta[i] X gamma end i; lambda := gamma;

Coda (n,c);

comment We may now re-evaluate the polynomial from the
power series;

for i := 1 step 1 until r do



COLLECTED ALGORITHMS (cont.)

begin x := zljl; f := ¢[n];
for i := n—1 step —1 until 0 do

f.=1fX x+ clil; ) )
comment the values of x and f should now be printed; end ]

end x
end Curve fitting

RessrENCE: PECK, J. E. L. Polynomial curve fitting with
constraint, Soc. Indust. Appl. Math. Rev. (1961).

CERTIFICATION OF ALGORITHM 74

CURVE FITTING WITH CONSTRAINTS {J. F.
Peck, Comm. ACM, Jan. 62]

Kazvo Isopa

Japan Atomic Energy Research Institute, Tokai, Ibaraki,
Japan
Algorithm 74 was hand-compiled into SOAP IIa for the IBM

650 and run successfully with no corrections except the case in
which the origin (0, 0) are given as both a constraint and a sample.

74P 2-

0



