```
L2:
ALGORITHM 77
                                                                                       jm := nop-1; js := 1; go to term;
                                                                             L3:
                                                                                       jm := 2; js := 1; go to term;
INTERPOLATION, DIFFERENTIATION, AND IN-
                                                                         comment
                                                                                       Locate argument;
  TEGRATION
                                                                             L4:
                                                                                       for ia := 2 step 1 until nop do begin
Paul E. Hennion
                                                                                       if xa [ia] > xarg then go to L7; jm := ia end;
Grumman Aircraft Engineering Corporation, Bethpage,
                                                                         comment
                                                                                       Before loop is complete xarg \leq xa [ia];
                                                                                       ca := a; cb := b; cc := c; js := 3; im :=
  L. I., New York
                                                                              L5:
                                                                                         jm+1; go to term;
real procedure AVINT (nop, jt, xarg, xlo, xup, xa, ya);
                                                                             L6:
                                                                                       a := (ca+a)/2; b := (cb+b)/2; c := (cc+c)/2;
                   value nop, jt, xarg, xlo, xup; real xarg, xlo, xup;
                                                                                         go to L9;
                   integer nop, jt; real array xa, ya;
                                                                             L7:
                                                                                       js := 2; go to term;
comment This procedure will perform interpolation, differen-
                                                                             L8:
                                                                                       go to beta [js];
    tiation, or integration operating upon functions of one vari-
                                                                             L9:
                                                                                       go to gamma [jt];
    able which over part or all of the interval of interest are ade-
                                                                         comment
                                                                                       Interpolation, jt = 1;
    quately described by a di-parabolic fit.
                                                                                       da := a \times xarg \uparrow 2 + b \times xarg + c; go to exit1;
                                                                             L10:
      The routine was originally programmed as an open subrou-
                                                                         comment
                                                                                       Differentiation, jt = 2;
    tine for the IBM 704 in FORTRAN II and occupied 323 memory
                                                                             L11:
                                                                                       dif := 2 \times xarg + b; go to exit2;
    locations. It is based upon a Lagrange interpolation scheme
                                                                         comment
                                                                                       Integration, jt = 3;
    specialized for averaged second order parabolas. The tech-
                                                                                       sum := 0; syl := xlo; jul := nop - 1;
                                                                             L12:
    nique finds the slope of a function numerically defined at
                                                                                         ib := 2;
    points 1, 2, 3 and 4 by fitting a parabola through the points
                                                                                       for jm := ib step 1 until iul do begin;
                                                                             L16:
    1, 2, 3, and another parabola through the points 2, 3, and 4.
                                                                                       Lagrange formulae;
                                                                         comment
    The slope then, at point 2, is the average analytical derivative
                                                                                       term1 := va [jm - 1]/((xa [jm - 1] - xa[jm]) \times
    of the two parabolas, i.e. the coefficients of the parabola
                                                                                         (xa[jm - 1] - xa[jm + 1]));
    through points 1, 2 and 3 (a_1x_2^2+b_1x_2+c_1) and the coefficients
                                                                                       term2 := ya [jm]/((xa [jm] - xa [jm - 1]) \times
    of the parabola through points 2, 3, and 4 (a_2x_2^2+b_2x_2+c_2)
                                                                                         (xa[jm] - xa[jm + 1]);
    are determined by applying Lagrange's equations as shown be-
                                                                                       term3 := ya [jm + 1]/((xa [jm + 1] - xa [jm - 1]) \times
    low. The arithmetic mean of these coefficients a = (a_1 + a_2)/2,
                                                                                         (xa [jm + 1] - xa [jm]));
    b = (b_1+b_2)/2, c = (c_1+c_2)/2 are used to supply the slope
                                                                                       a := term1 + term2 + term3;
    in the interval from 2 to 3, namely (2ax + b).
                                                                                       b := -(xa [jm] + xa [jm + 1]) \times term1 - (xa
      The interpolation is calculated in similar fashion, except the
                                                                                         [jm - 1] + xa [jm + 1]) \times term2 - (xa [jm - 1] +
    final formula is that a parabola (ax^2 + bx + c).
                                                                                         xa [jm]) × term3;
      The integration is performed likewise by a curve fitting
                                                                                       c := xa [jm] \times xa [jm + 1] \times term1 + xa [jm - 1] \times
    process, e.g. the integral between any two points say 2 and 3
                                                                                         xa [jm + 1] \times term2 + xa [jm - 1] \times xa [jm] \times
    is the average integral of the two parabolas between the inde-
                                                                                         term3; go to delta [jt];
    pendent coordinate limits for points 2 and 3. The averaging
                                                                             L13:
                                                                                       if jm \neq 2 then go to L14;
    process is done for each interval along the abscissa as the
                                                                                       ca := a; cb := b; cc := c; go to L15;
    results obtained are accumulated to evaluate the definite
                                                                                       ca := (a + ca)/2; cb := (b + cb)/2; cc :=
                                                                             L14:
    integral.
                                                                                         (c + cc)/2;
      Applying Lagrange's equations, the coefficients a, b, and c
                                                                             L15:
                                                                                       syu := xa [jm];
    may be found by defining: T_j = y_j / \prod_{i=1, i \neq j}^n (X_i - \underline{X_i}) where
                                                                                       sum := sum + ca \times (syu \uparrow 3 - syl \uparrow 3)/3 + cb \times
    \begin{array}{l} y \; = \; f(x), \quad n \; = \; 3, \quad j \; = \; 1, \; 2, \; \cdots, \; n, \; then \; \; a \; = \; \sum_{i=1}^n \; T_i \; , \\ b \; = \; \sum_{i=1}^n \; T_i \sum_{i=1, \; j \neq i}^n \; X_j \; , \quad c \; = \; \sum_{i=1}^n \; T_i \prod_{j=1, \; j \neq i}^n \; X_j \; ; \end{array}
                                                                                         (\text{syu} \uparrow 2 - \text{syl} \uparrow 2)/2 + \text{cc} \times (\text{syu} - \text{syl});
                                                                                       ca := a; cb := b; cc := c; sy1 := syu end;
begin real ca, cb, cc, a, b, c, syl, syu, term1, term2, term3, da,
                                                                                       End of loop on [jm] index;
                                                                         comment
                                                                                       sum := sum + ca \times (xup \uparrow 3-sy1 \uparrow 3)/3 + cb \times
                dif. sum:
              jm, js, jul, ia, ib;
integer
                                                                                         (\sup \uparrow 2\text{-sy1} \uparrow 2)/2 + cc \times (\sup - \text{sy1}); go
              switch alpha := L1, L1, L12; switch beta := L9,
    start:
                                                                                         to exit3;
                L5, L6;
                                                                             term:
                                                                                       ib := jm; jul := ib; go to L16;
              switch gamma := L10, L11; switch delta := L8,
                                                                                       The results for interpolation, differentiation, and
                                                                         comment
                                                                                         integration are da, dif, and sum respectively;
              For interpolation, differentiation or integration set
comment
                                                                             exit1:
                                                                                      AVINT := da; go to exit;
                jt = 1, 2, or 3 respectively;
                                                                                      AVINT := dif; go to exit;
                                                                             exit2:
              go to alpha [jt];
                                                                             exit3:
                                                                                      AVINT := sum;
    L1:
              if xarg \ge xa [nop] then go to L2;
                                                                             exit:
                                                                                       end
```

if $xarg \ge xa [nop-1]$ then go to L2; if $xarg \le xa [1]$ then go to L3;

if xarg ≤ xa [2] then go to L3; go to L4;

CERTIFICATION OF ALGORITHM 77

AVINT (Paul E. Hennion, Comm. ACM 5, Feb., 1962)

VICTOR E. WHITTIER

Computations Res. Lab., The Dow Chemical Co., Midland, Mich.

AVINT was transliterated into BAC-220 (a dialect of Algol-58) and was tested on the Burroughs 220 computer. The following minor errors were found:

- 1. The first statement following label L11 should read:
 - $dif := 2 \times a \times xarg + b;$
- 2. The semicolon (;) at the end of the line beginning with the label L16 should be deleted.
- 3. There appears to be a confusion between "1" (numeric) and "1" (alphabetic) following label L12. This portion of the program should read:

L12: sum := 0; syl := xlo; jul := nop - 1; ib := 2;

After making the above corrections the procedure was tested for interpolation, differentiation, and integration using e^x , log X, and $\sin X$ in the range $(1.0 \le X \le 5.0)$. Twenty-one values of each of these functions, evenly spaced with respect to X and accurate to at least 7 significant digits, were tabulated in the above range. Then the procedure was tested. The following table indicates approximately the accuracy obtained:

Number of Significant Digits			
Function	Interpolation	Differentiation	Integration
e^x	≧ 4*	≥ 2	≥ 4
$\log X$	≥4*	≥ 2	≥ 3
$\sin X$	≥4*	≥ 2	≥ 4

* Except for interpolation between the first two points in the

The above results are quite reasonable in view of the relatively large increment in X. Tests using smaller increments in X and uneven spacing of X were also satisfactory.

It was also discovered that for integration the following restrictions must be observed:

- 1. $xlo \leq xa(1)$.
- 2. $\sup \ge xa \pmod{}$.

REMARK ON ALGORITHM 77

INTERPOLATION, DIFFERENTIATION, AND IN-TEGRATION [P. E. Hennion, Comm. ACM, Feb., 1962] P. E. HENNION

Giannini Controls Corp., Berwyn, Penn.

It was brought to my attention through the CERTIFICATION OF ALGORITHM 77 AVINT [V. E. Whittier, Comm. ACM, June, 1962 that restrictions on the upper and lower limits of integration existed, i.e., (1) $x10 \le xa$ (1), (2) $xup \ge xa(nop)$. To remove these restrictions the following two changes should be made.

1. Before line L16: and after the statement ib := 2; place the following code:

for ia := 1 step 1 until nop do begin

if $xa(ia) \ge x10$ then go to L17; ib := ib + 1; end;

- L17: $ju\ 1 := nop + 1$; for ia := 1 step 1 until nop do begin ju 1 := ju 1 - 1; if xa(ju 1) > xup end; ju 1 := ju 1 - 1;
 - 2. Change line L13: to read:
- L13: if $jm \neq ib$ then go to L14;

REMARK ON ALGORITHM 77 INTERPOLATION, DIFFERENTIATION, AND IN-

TEGRATION [P. E. Hennion, Comm. ACM 5, Feb. 1962]

P. E. HENNION

Giannini Controls Corp., Berwyn, Penn.

It was brought to my attention through the CERTIFICATION OF ALGORITHM 77 AVINT (V. E. Whittier, Comm. ACM, June, 1962) that restrictions on the upper and lower limits of integration existed, i.e., (1) $x10 \le xa(1)$, (2) $xup \ge xa(nop)$. To remove these restrictions the following two changes should be made.

1. Replace the two lines starting at line L12: and ending after the statement ib := 2; with the following code:

```
L12: sum := 0; sy1 := x10; ib := 2; ju1 := nop;
      for ia := 1 step 1 until nop do begin
      if xa [ia] \ge x10 then go to L17; ib := ib + 1; end;
```

L17: for ia := 1 step 1 until nop do begin if $xup \ge xa$ [jul] then go to L18; jul := jul - 1; end;

L18: ju1 := ju1 - 1;

2. Change line L13: to read

L13: if $jm \neq ib$ then go to L14;