COLLECTED ALGORITHMS FROM CACM

ALGORITHM 77

INTERPOLATION, DIFFERENTIATION, AND IN-
TEGRATION

Pavrn E. Hex~NiON

Grumman Aircraft Engineering Corporation, Bethpage,
L. I., New York

real procedure AVINT (nop, jt, xarg, xlo, xup, xa, ya);
value nop, jt, xarg, xlo, xup; real xarg, xlo, xup;
integer nop, jt; real array xa, ya;
comment This procedure will perform interpolation, differen-
tiation, or integration operating upon functions of one vari-
able which over part or all of the interval of interest are ade-
quately described by a di-parabolic fit.

The routine was originally programmed as an open subrou-
tine for the IBM 704 in ForTraN II and occupied 323 memory
locations. It is based upon a Lagrange interpolation scheme
specialized for averaged second order parabolas. The tech-
nique finds the slope of a function numerically defined at
points 1, 2, 3 and 4 by fitting a parabola through the points
1, 2, 3, and another parabola through the points 2, 3, and 4.
Theslope then, at point 2,is the average analytical derivative
of the two parabolas, i.e. the coeflicients of the parabola
through points 1, 2 and 3 (a:x22+bx24c1) and the coefficients
of the parabola through points 2, 3, and 4 (a:x:24bsXs-c2)
are determined by applving Lagrange’s equations as shown be-
Jow. The arithmetic mean of these coefficients a = (a;+a,)/2,
b = (bi+bs)/2, ¢ = (e1+c2)/2 are used to supply the slope
in the interval from 2 to 3, namely (2ax + b).

The interpolation is calculated in similar fashion, except the
final formula is that a parabola (ax? 4+ bx 4 ¢).

The integration is performed likewise by a curve fitting
process, e.g. the integral between any two points say 2 and 3
is the average integral of the two parabolas between the inde-
pendent coordinate limits for points 2 and 3. The averaging
process is done for each interval along the abscissa as the
results obtained are accumulated to evaluate the definite
integral. :

Applying Lagrange’s equations, the coefficients a, b, and ¢
may be found by defining: T; = }'j/H?:l, i (X; — Xi) where
y=1(x), n =23, j=1,2---,n, thena = >0, T,
b= >t T i Xi, e = 2 T [, 14 X5 5

begin real ca, cb, cc, a, b, ¢, syl, syu, terml, term2, term3, da,
dif, sum;
integer jm, js, jul, ia, ib;
start: switch alpha := L1, L1, L12; switch beta :
L5, IJG,
switch gamma := L10, L11; switch delta := LS,
L8, L13;
comment For interpolation, differentiation or integration set
jt = 1, 2, or 3 respectively;
go to alpha [jt];
1.1: if xarg > xa [nop] then go to 1L2;
if xarg > xa [nop—1] then go to L2;
if xarg < xa [1] then go to L3;
if xarg < xa [2] then go to L3; go to L4;

i

L9,

L2:
L3:
comment

L4:

comment

L5:

L6:

L7:
L8:
L9:
comment
L10:
comment
Li1:
comment
Li2:

L16:

comment

L13:
L14:

L15:

comment

term:
comment

exitl:
exit2:
exitd:
exit:

77-P 1- 0

jm := nop—1; js:=1; go to term;
jm := 2; js :=1; go to term;
Locate argument;

for ia := 2 step 1 until nop do begin

if xa [ia] > xarg then go to L7; jm := ia end;
Before loop is complete xarg < xa [ia];
ca := a; ¢b := b; cc = ¢; js := 3; im :=

jm—+1; go to term;

a = (cata)/2; b := (cb+b)/2; ¢ := (cc+e)/2;
go to L9;

js := 2; go to term;

go to beta [js];

go to gamma [jt];

Interpolation, jt = 1;

da :=a X xarg T 2 4+ b X xarg + ¢; go toexitl;

Differentiation, jt = 2;

dif := 2 X xarg 4+ b; go to exit2;

Integration, jt = 3;

sum := 0; syl := xlo; jul := nop — 1;
ib 1= 2;

for jm := ib step 1 until iul do begin;

Lagrange formulae;

terml := ya [jm — 1]/((xa [jm — 1] — xa[jm]) X
(xaljm — 1] — xaljm + 1]));

term2 := ya [jm]/((xa [jm] — xa [jm — 1]) X
(xalim] — xa [jm + 1));

term3 := ya [jm + 1]/((xa [jm 4+ 1] — xa [jm — 1]) X
(xa [jm + 1] — xa [jm]));

a := terml 4 term2 + term3;

b := —(xa [jm] + xa [jm + 1]) X terml — (xa
[im — 1]+ xa [jm + 1]) X term2 — (xa [jm — 1] +
xa [jm]) X term3;

¢:=xa[jm] X xa [jm + 1] X terml + xa [jm — 1] X
xa [jm + 1] X term2 + xa [jm — 1] X xa [jm] X
term3; go to delta [jt];

if jm # 2 then go to L14;

ca:=a; ch:=b; cc:=rc; go toLls;

ca := (a 4+ eca)/2; ¢cb 1= (b 4+ c¢b)/2; cc :=
(¢ + cc)/2;

syu := xa [jm];

sum :=sum + ca X (syu 7 3 — syl T 3)/3 4+ cb X
(syu T 2 — syl T 2)/2+ cc X (syu — syl);

ca:=a; cb:=Db; cc:=c; syl := syuend;

End of loop on [jm] index;

sum := sum + ca X (xup T 3-syl T 3)/3 + ¢cb X
(xup T 2-syl T 2)/2 + cc X (xup — syl); go
to exit3;

ib 1= jm; jul := ib; go to L16;

The results for interpolation, differentiation, and
integration are da, dif, and sum respectively;

AVINT := da; go to exit;

AVINT := dif; go to exit;

AVINT := sum;

end



COLLECTED ALGORITHMS (cont.)

CERTIFICATION OF ALGORITHM 77

AVINT (Paul E. Hennion, Comm. ACM 5, Feb., 1962)

Vicror E. WHITTIER

Computations Res. Lab., The Dow Chemical Co., Mid-
land, Mich.

AVINT was transliterated into BAC-220 (a dialect of ALGOL-58)
and was tested on the Burroughs 220 computer. The following
minor errors were found:

1. The first statement following label 111 should read:
dif := 2 X a X xarg + b;

2. The semicolon (;) at the end of the line beginning with the label
1.16 should be deleted.

3. There appears to be a confusion between ‘1’ (numeric) and
“1”" (alphabetic) following label L12. This portion of the
program should read:

L12: sum :=0; syl := xlo; jul ;= nop —1; ib:=2;

After making the above corrections the procedure was tested for
interpolation, differentiation, and integration using e?, log X, and
sin X in the range (1.0 £ X £ 5.0). Twenty-one values of each of
these functions, evenly spaced with respect to X and accurate to
at least 7 significant digits, were tabulated in the above range.
Then the procedure was tested. The following table indicates ap-
proximately the accuracy obtained:

Nwumber of Significant Digits

Function Interpolation D1 fferentiation Integration
e* =4* =2 =4
log X =4* =2 =3
sin X =4* =2 =4

* Except for interpolation between the first two points in the
table.

The above results are quite reasonable in view of the relatively
large increment in X. Tests using smaller increments in X and un-
even spacing of X were also satisfactory.

It was also discovered that for integration the following re-
strictions must be observed:

1. xlo £ xa (1).

2. xup Z xa (nop).

REMARK ON ALGORITHM 77

INTERPOLATION, DIFFERENTIATION, AND IN-
TEGRATION [P. E. Hennion, Comm. ACM, Feb., 1962]
P. E. HExx1ON

Giannini Controls Corp., Berwyn, Penn.

It was brought to my attention through the CKRTIFICATION
OF ALGORITHM 77 AVINT [V. E. Whittier, Comm. ACM, June,
1962] that restrictions on the upper and lower limits of integration
existed, i.e., (1) 210 £ za (1), (2) zup = za(nop). To remove
these restrictions the following two changes should be made.

1. Before line L16: and after the statement 7b := 2; place the
following code:

for ia := 1 step 1 until nop do begin

if za(ia) = 710 then go to I.17; ib := b 4 1; end;
L17: jul := nop + 1; for ia ;= 1 step 1 until nop do begii:

gul = ul —1;

2. Change line L13: to read:
L13: if jm 5 1b then go to L14;

if ra(Gul) > zup end; jul := jul — 15

77-P 2- 0

REMARK ON ALGORITHM 77

INTERPOLATION, DIFFERENTIATION, AND IN-
TEGRATION [P. E. Hennion, Comm. ACM 5, Feb.
1962]

P. E. HExNION

Giannini Controls Corp., Berwyn, Penn.

It was brought to my attention through the CERTIFICATION
OF ALGORITHM 77 AVINT (V. E. Whittier, Comm. ACM,
June, 1962) that restrictions on the upper and lower limits of inte-
gration existed, i.e., (1) zlo =< za(l), (2) zup = za(nop). To remove
these restrictions the following two changes should be made.

1. Replace the two lines starting at line L12: and ending after
the statement ¢b := 2; with the following code:

L12: sum := 0; syl := zlo; b := 2; jul := nop;
for ia := 1 step 1 until nop do begin
if za [ta] 2 zlo then go fo L17; b := ib 4+ 1; end,;
L17: for ia := 1 step 1 until nop do begin
if zup = za [jul] then go to L18; jul := jul — 1;
L18: jul := jul — 1;
2. Change line L13: to read
L13: if jm # ib then go to L14;

end;



