```
ALGORITHM 79
DIFFERENCE EXPRESSION COEFFICIENTS
THOMAS P. GIAMMO
Space Technology Laboratories, Inc., Los Angeles, Cali-
procedure dicol (k, n, xp, xtab, coef);
value k, n; integer k, n; real xp;
array xtab, coef;
comment dicol produces the coefficients for the n ordinates
  (corresponding to the abscissae, xtab) in the n-point finite
  difference expression for the k-th derivative evaluated at xp.
  The method used is to determine the analytic expression for
  the k-th derivative of each coefficient in the n-point Lagrangian
  interpolation formula and evaluate it at xp. Note that k=0
   will produce the Lagrangian interpolation coefficients them-
   selves;
 begin integer array xuse [1 : n-1]; real factk, sum, denom,
   part;
 integer i, terms, j, m, high;
 factk := 1.0; \  \, \textbf{for} \,\, i := 2 \,\, \textbf{step} \,\, 1 \,\, \textbf{until} \,\, k \,\, \textbf{do} \,\, factk := i \times factk;
 terms := n-k-1; if terms < 0 then go to Z;
 for j := 1 step 1 until n do
 loop: \mathbf{begin} \ \mathrm{sum} := 0; \mathrm{denom} := 1.0; \mathrm{part} := 1.0;
             for i := 1 step 1 until n do
             if i \neq j then denom := denom\times(xtab [j] - xtab [i]);
             if terms = 0 then go to Y;
             m := 1; high := 1;
         A: if (high = j) \bigvee (xtab [high] = xp) then
              A1: begin high := high + 1; go to A end A1;
              if high > n then A2: begin m := m-1; if m>0
                then
              A3: begin high := xuse [m]+1; go to A end A3;
              go to X end A2;
              xuse [m] := high; m := m+1;
              if m≤terms then begin high := high + 1; go to
                A end:
              for i := 1 step 1 until terms do
                part := part \times (xp - xtab [xuse [i]]);
              sum := sum + part; m := terms; part := 1.0;
              high := xuse [terms] + 1; go to A;
          Y: sum := 1.0;
          X \colon \ coef \ [j] \ := \ sum \ \times \ factk/denom \ \textbf{end} \ loop;
            go to EXIT;
           Z\colon \  \, \textbf{for} \ i:=1 \ \textbf{step} \ l\textbf{-until} \ n \ \textbf{do} \ coef \ [i] :=0;
           EXIT: end dicol
```

CERTIFICATION OF ALGORITHM 79 DIFFERENCE EXPRESSION COEFFICIENTS

[Thomas Giamo, Comm. ACM, Feb. 1962]

EVA S. CLARK

University of California at San Diego, La Jolla, California

The procedure was translated into FORTRAN and run on the CDC 1604. Reasonable accuracy was obtained for $k=0, 4 \le n \le 12$. For increasing n and increasing k, the accuracy diminished. It was found that the execution time increased rapidly as n was increased. For k = 0, the following results were obtained:

n	Approximate Number of Machine Operations
4	1.3×10^{3}
6	6.9×10^{3}
8	3.8×10^{4}
10	1.8×10^{5}
12	8.6×10^{5}

The author indicated in a letter that the procedure was developed for use with small n and small k.