COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 82
ECONOMISING A SEQUENCE 2
Brian H. Mavon

Digital Computer Laboratory, University of Illinois,
Urbana, Ill.

procedure ECONOMISER 2 (desired property, costs, n, C, r,
Reject list); Boolean procedure desired property;
integer n, r; array costs; Boolean array Reject list;
begin comment In some applications of ECONOMISER 1, it

is simple to establish that some subsequences are redundant in
the sense that any sequence containing them is certainly not
the cheapest subsequence with the desired property. For such
applications ECONOMISER 2 avoids all unnecessary calls of
desired property. The new formal parameters are: r a variable
whose value is initially 0 and is increased by 1 every time that
desired property discovers a new redundant subsequence.
Reject list an array of size [1:r,1:n]. Reject list [a,b] carries the
answer to: Is element b of the original sequence in the att
redundant subsequence found by destred property?;
real i; integer d, ], k, {; Boolean gapfilled, first time;
procedure INSIDE (entrymaker); Boolean entrymaker:
begin own real array prices{l:d];

own Boolean array alternatives{l:d,l:n];

procedure ENTER SUCCESSORS;

begin integer ¢; Boolean array ssq[l:n}];

for j := 1 step 1 until n do ssqfj] := C[j];
¢ :=n—1;

A: if — ssqfc] then begin ¢ := ¢—1; go to A end:
Cle] := false; Clc+1] := true;

INSIDE (true);
gapfilled := true;
B: ¢:=¢—-1;
go to if ¢c=0 then F else if ssqic] then
(if c=1 then F else B) else if c=1 then
E else if ssqlc—1] then D else F;
D: ssqe—1] := false;
E: forj := 1 step 1 until n do C[j] :=
INSIDE (true);
F: end of ENTER SUCCESSORS;
if entrymaker then
begin for j := 1 step 1 until r do
begin for k := 1 step 1 until n do
begin if - C[k] A Reject list[j k] then

ssqfj] = j#=c;

go to G end;
ENTER SUCCESSORS; go to H;
G: end;
i := 0; if gapfilled then d := d+1;

for j := 1 step 1 until n do
begin alternatives[if gapfilled then
d else ¢, j] := Clj];
if C[j] then i := i + costs[j}
end; prices[if gapfilled then d else {] := i
end; if first tinie \V — entrymaker then
begin i := 0; gapfilled := first time := false;
for j := 1 step 1 until d do
begin if prices[j] < i then
begin { := j; i := prices[{] end
end;

for j := 1 step 1 until n do
C[j] := alternatives[(,j];
if desired property then go to found;
ENTER SUCCESSORS; go to reenter
end;
H: end of INSIDE;
for j := 1 step 1 until n do C[j] := j=1;
d := 0; first time := gapfilled := true;
reenter: INSIDE (first time);
found:
end of ECONOMISER 2;

82-P 1-

0



