```
ALGORITHM 83
OPTIMAL CLASSIFICATION OF OBJECTS
BRIAN H. MAYOH
Digital Computer Laboratory, University of Illinois,
  Urbana, Ill.
procedure OPTIMUM COVERING FINDER (Pattern, popu-
  lation, set number, set prices, chosen sets, bounds, overflow);
  Boolean array Pattern, chosen sets; integer population,
 set number, bounds; array set prices; label overflow;
begin comment The number of objects in some given set is
  given by population. The procedure is given a classification of
  these objects by a collection of overlapping subsets. A cost
  is assigned to each subset. Then OPTIMUM COVERING
  FINDER selects the cheapest subcollection such that every
  object is contained in at least one of the subsets of the sub-
  collection. set prices[i] carries the cost of subset i. Pattern
  is an array of size [1:set number,1:population] such that Pat-
  tern[a,b] \equiv does \text{ subset } a \text{ include object } b. \quad chosen \text{ sets}[i] \text{ finally}
  carries the answer to the question: Is set i in the cheapest
  subcollection? The programmer must restrict the amount of
  space available to the procedure by setting bounds. From ex-
  perience bounds = set number \? 2 suffices to avoid most alarm
  exits to overflow.;
  Boolean array C[1:population], D[1:bounds, 1:population],
    R, S[1:bounds,1:set number];
  integer a, b, d, r, s;
  Boolean procedure HAVE WE A COVERING;
  begin procedure ADD to (Q,q,f); integer q;
          real f; Boolean array Q;
      begin if q=bounds then go to overflow else q := q+1;
        for a := 1 step 1 until set number do Q[q,a] := f
      end; for a := 1 step 1 until population do
               C[a] := false;
      for a := 1 step 1 until set number do
      begin if chosen sets[a] then
        for b := 1 step 1 until population do
        C[b] := C[b] \vee Pattern[a,b]
      end; for a := 1 step 1 until population do
      begin if ¬ C[a] then go to E end;
      go to found;
  E: for d := 1 step 1 until s do
      begin for b := 1 step 1 until population do
        begin if C[b] \land \neg D[d,b] then go to try another end;
        ADD to (R, r, chosen sets[a]);
        for b := 1 step 1 until set number do
        begin if chosen sets[b] \land \neg S[d,b] then
          ADD to (R, r, S[d,a] \vee a=b)
        end; go to F;
      try another:
      end of for statement labelled E;
      ADD to (S, s, chosen sets[a]);
      \textbf{for } a := 1 \textbf{ step 1 until population do } D[s,a] := C[a];
  F: HAVE WE A COVERING := false
  end; r := s := 0;
  ECONOMISER 2 (HAVE WE A COVERING, set prices,
    set number, r, R, chosen sets);
```

found: end