COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 85

JACOBI

Tuomas G. Evaxs

Bolt, Beranek, and Newman®*, Cambridge, Mass.

* This work has been sponsored by the Air Force Cambridge
Research Laboratories, OAR (USAF), Detection Physics Lab-
oratory, under contract AF 19(628)-227.

procedure JACOBI (A, S, n, rho);

integer n; real rho; real array A, S;

comment This procedure finds all eigenvalues and eigenvectors
of a given square symmetric matrix by a modified Jacobi (itera-
tive) method (cf. J. Greenstadt, “The determination of the charac-
teristic roots of a matriz by the Jacobi method,” in Mathematical
Methods for Digital Computers, A. Ralston and H. 8. Wilf, eds.).
JACOBI is given a squaresymmetric matrix of order nstoredin
the array A. The initial contents of the array S are immaterial,
as Sisinitialized by the procedure. At exit the k** column of the
array S contains thektt of the n eigenvectors of the givenmatrix,
and the diagonal element A[k, k] of the array A is the corre-
sponing k'* eigenvalue. The parameter rho is the ‘‘accuracy
requirement’’ introduced in the above reference, where a de-
tailed flow chart of the method is given. The significance of rhois
that the iteration terminates when, for every off-diagonal ele-
ment Ali, jl,abs (Afi, j]) < (rho/n) X norml, where norml is a
function only of the off-diagonal elements of the original matrix;

begin real norml, norm2, thr, mu, omega, sint, cost, intl, vl,
v2, v3;
integer i, j, p, q, ind;
comment Set array S = n X n identity matrix;
for i := 1 step 1 until n do

value n, tho;

for j := 1 slep 1 until i do
ifi = j then 8{i, j] := 1.0
else S[i, j} := 8[j, 1] := 0.0;
comment Calculate initial norm (norml), final norm (norm2),
and threshold (thr);
intl := 0.0;
for i :=2 step 1 until n do

for j :=|step 1 until i—1 do
intl := intl + 2.0 X Afi, j] T 2;
norml := sqrt (intl); norm2 := (rho/n) X norml;
thr := norml; ind := 0;
main: thr := thr/n;
comment The sweep through the off-diagonal elements be-

gins here;
mainl: for q := 2 step 1 until n do
for p := 1 step 1 until q—1 do
if abs (Alp, q]) = thr then
begin ind := 1; vl := Alp, pl; v2:= Alp. gl;
v3 := Alq, q]; mu := 0.5 X (vl—v3);
omega := (if mu = 0.0 then 1 else sign (mu)) X
(—=v2)/sqrt.(v212 4+ mul2);
sint := omega/sqrt(2.0 X (1.0 + sqrt(1.0 —
omegal2)));
cost := sqrt (1.0 — sint]2);
for i := 1 step 1 until n do
begin intl :—= A[i, p] X cost — A[i, q] X sint;
Ali, q] := Ali, p) X sint + Ali, q] X cost;
Afi, p] := intl;
intl := Sli, p| X cost — 8[i, q] X sint;

85-P1- 0

Sf, q] := S[i, p! X sint + Sli, gq] X cost;
Sli, p] := intl
end;
for i :=‘step 1 until n do
begin Alp,i] := Ali, p}]; Alq,i] := Aliq) end;
Alp, p] := vl X costf2 + v3 X sint]2 — 2.0 X
v2 X sint X cost;
Alg, q] := vl X sint12 + v3 X cost12 + 2.0 X
v2 X sint X cost;
Alp, 4] := Alq, p] := (vl — v3) X sint X cost +
v2 X (cost]2 — sint12)
end;
comment Now test to see if current tolerance exceeded and,
if not, whether final tolerance reached;
if ind = 1 then begin ind := 0; go to mainl end
else if thr > norm2 then go to main
end JACOBI

CERTIFICATION OF ALGORITHM 85
JACOBI [T. G. Evans, Comm. ACM, Apr. 1962]
J. S. HiLLMORE

Elliott Bros. (London) Ltd., Borehamwood, Herts.,.
England
The statement

omega := (if mu = 0.0 then 1 else sign (mu))

X (—=V2)/sqrt(V2 1 24mu T 2);
was changed to
omega := if mu = 0.0 then —1.0 else — sign (muw)
X V2/sqrt (V21 2+4mu T 2);
When mu = 0, the original statement reduces to
omega 1= —V2/sqrt (V21 2);
and a truncation error in the evaluation of the square root can
make the magnitude of omega slightly greater than unity. As a
result, an error stop occurs during execution of the next statement
when an attempt is made to evaluate sqrt (1 — omega 1 2).

In its modified form the algorithm has been successfully run
using the Elliott ArgoL translator on the National-Elliott 803.
Matrices of order up to fifteen have been solved, yielding eigen-
values and eigenvectors with an overall accuracy of seven decimal
places.

CERTIFICATION OF ALGORITHM 85

JACOBI [Thomas G. Evans, Comm. ACM (Apr. 1962),
208]

P. Naur

Regnecentralen, Copenhagen, Denmark

We have first run this algorithm in the GIEr ALGOL system with
the following corrections included:

1. The change given by J. S. Hillmore [Comm. ACM § (Aug.
1962), 440] with capital V changed to ».

COLLECTED ALGORITHMS (cont.)

2. The 4th for clause corrected to read:
for j := 1 step 1 until ¢ — 1 do
3. The last for clause corrected to read:

for ¢ := 1 step 1 until » do

On closer examination we have found, however, that a signifi-
cant number of superfluous operations could be eliminated in the
innermost loop by rewriting the two for statements at the center
of the algorithm as a single for statement, to read as follows:

cost 1= sqrt (1—sint T 2);
for ¢ := 1 step 1 until n do
begin ifi # p A i # ¢ then
begin inil := Ali,p]; mu := Ali,ql;
Alg,i] := Ali,q] := intl X sint + mu X cost;
Alp,i] := Ali,p] := intl X cost — mu + sint
end;
intl = Sli,pl; mu := Sli,q];
Sli,q] := intl X sint + mu X cost;
S[2,p] = 2ntl X cost — mu X sint
end;
Alp,pl := vl X cost T 243 X sint T2 —2 X 02 X sint X cost;

This revision is particularly advantageous in systems having a
comparatively slow subscript mechanism, such as GIER ALgGoL,
because it eliminates more than 3 out of 8 references to subscripted
variables.

JACOBI has been tried with two different sets of matrices hav-
ing known eigenvalues. In both cases a test program was set up to
find the range of errors of the eigenvalues computed by JACOBI.
In addition, the relations Av — Av = 0 (A is the given matrix, v
an eigenvector, and X the corresponding eigenvalue) and 4 — (S7')
LAMBDA S = 0 (S is the matrix having the eigenvectors as col-
umns and S7' its transpose, and LAMBDA is the diagonal matrix
of the eigenvalues) were used as checks. The test matrices were
TESTMATRIX calculated by the revised algorithm 52 given in
Comm. ACM 6 (Jan. 1963), 39, and the following matrix suggested
by Mr. H. B. Hansen:

HBH TESTMATRIX [;,/] = HBH TESTMATRIX [7,j]
=n—4+1—-7 i1

having the eigenvalues 0.5/(1 — cos (2Xi—1)Xpi/(2Xn+1))).
The results were as shown in Table 1 (GiEr ALgoL works with
floating numbers of 29 significant bits).
The compile time for the program which produced one of these
tables was about 40 seconds. Run times were as follows:

Original algorithm Revised algo-

TESTMATRIX ALG. 52 HBH rithm HBH
TESTMATRIX TESTMATRIX
Rho ” (seconds) (seconds)

10—3 5 3

10 22

15 70

10—95 5 3 5

10 5 41 29

15 13 148 99

10—8 5 4 7 6
6 5 12
7 5 18
8 5 25

10 13 38

15 22 116

85-P2- 0

From these figures it looks as if TESTMATRIX, Algorithm 52,
is atypical as far as solution by means of JACOBI is concerned.
The much higher accuracy obtained for this matrix as compared
with the HBH matrix points in the same direction.

For further comparison it may be mentioned that the algo-
rithms published by J. H. Wilkinson [Num. Math. 4 (1962), 354—
376] also have been tested successfully with Gier ALcoL. Wilkin-
son’s algorithms reduce the matrix to tridiagonal form by means
of Householder’s method and use Sturm sequences to find the
eigenvalues and inverse iteration to find the eigenvectors. In GIgr
ALGoL this method is about 1.3 times as fast as JACOBI for the
range of matrices considered here. JACOBI has the advantage
that the eigenvectors are properly orthogonal, even in the case of
multiple eigenvalues, and also has a much simpler logic. On the
other hand if only some of the eigenvalues and/or eigenvectors are
sought Wilkinson’s algorithms will often offer much higher speed
than JACOBI, which always finds them all.

COLLECTED ALGORITHMS (cont.) 85-P3- 0
TABLE 1
HBH TESTMATRIX
Range of true errors of cigenvalues Range gf dev]iatiggs fromorclation Rarj{ge of(sd%\;iitlig\x;sﬁgt;\msrela(t}inn
e Av — lambda » = - (S 3 =
Order j errar(;) i error(j] 1{?31‘[Vector Error ﬁéﬁt—t Vector Error 71E1({i;£ Vector Error ﬁii{, Vector Error
rho = 1.0p—3
5 1 —=1.1;4y—6 3 5.2,—8 1 1 —1.7—4 1 3 2.010—4 1 1 —2.5;0—4 5 5 1.0,0—4
10 9 —=7.910=5 8 3.510—5 7 2 —3.310—3 6 6 3.010—3 1 1 —4.21—3 6 7 3.250—3
15 15 —9.2;0—5 12 3.700—5 6 3 —1.70—3 11 13 1.7,—-3 . 9 15 —1.5190—3 8 9 1.810—3
rho = 1.010~5
5 1 —1.1,0—6 3 6.010—8 2 5 —1.310—7 5 2 4.1,0—8 1 2 —1.610—7 4 5 4.5;0—8
10 1 —1.2y0—5 2 2.24y—7 7 3 —2.74—5 2 8 2.210—5 7 7 —2.410—5 2 8 2.310—5
15 1 —3.510—5 4+ 39,7 11 9 —6.410—6 7 2 4.8;0—6 111 12 —5.310—6 12 12 4.7,0—6
rho = 1.070—8
5 1 —1.1,0—6 3 6.010—8 2 5 —1.31,—7 4 2 6.5;0—9 2 2 —1.310—7 4 4 3.010—8
10 1 —1.25,—5 2 2.2y—7 1 10 —1.1,,—06 4 2 6.4:0—8 1 2 —5.710—7 9 9 8.2;0—8
15 1 —=3.5;—5 4+ 3.90—7 i 1 14 —3.410—6 4 2 3.950—7 2 2 —1.350—6 15 15 8.910—8
TESTMATRIX, Algorithm 52
Range of true errors of eigenvalues Range/;)vt; (_jfvlzint:gg: ir():morelation Rar[\/lge_of(g]e“\jiitgﬁ%iggmsrila(t)ion
Order 3 crrorj) 7 errer(j] fclf{l Vector Error :éi;l Vector Errer 5?;} Vector Error 55;} Vector Error
rho = 1.010—5
5 1 —1.01v—8 1 .0) 5 —3.310—8 5 4 4.3,0—8 5 5 —5.1,0—8 4 4 3.%10—8
10 8§ —1.1;,)—8 + .0 } 7 7 —1.2;,—8 9 6 1.310—8 7 8 —5.110—9 6 6 2.010—8
15 13 —-1.1,,—8 [§} .0 P14 14 —9.310—9 10 10 9.410—9 8 9 —1.919—9 10 10 1.3;0—8
|
rho = 1.04—8
3 3 —7.5,4—9 1 3.710-9 ‘ 3 1 —2.810—9 2 2 9.310—9 1 3 .0 1 2 1.910—8
4 4 —5.610—9 3 .0 2 2 —4.5,,—9 3 4 3.310—9 2 2 .0 2 3 9.310—9
5 4 —1.04—8 1 .0 ‘ 5 4 —4.91,—9 4 4 5.810—9 1 1 —7.550—9 3 4 7.510—9
6 4+ —4.71p—9 4 .0 |4 3 —2.810—9 5 4 3.610—9 1 6 —2.310—10 4 5 9.310—9
T 4 =5.11—9 5 .0 I 6 6 —2.810—9 4 4 3.410—9 5 7 —1.2,4—10 5 6 7.510—9
8 7T —7.51,—9 5 .0 5 5 —6.010—9 5 6 3.210—9 8 8 —1.244—10 7 7 9.3:0—9
9 6 —4.40-9 7 .0 6 5 —5.110—9 7 6 3.210—9 5 5 —7.510—9 8 8 1.50—8
10 8 —1.510—8 8 .0 -8 9 —9.310—9 9 7 7.210—9 6 7 —2.310—9 9 9 2.0;0—8
11 10 —7.50—9 1 .0 9 10 —6.510—9 8§ 11 3.010—9 1 1 —3.110—9 8 8 7.510—9
12 8 —5.010—9 11 0 110 6 —7.659—9 10 8 2.4,0—9 [6 —1.7,0—8 4 4 1.3;0—8
13 12 —1.1,,—-8 10 .0 10 11 —6.910—9 12 10 9.1,0—9 7 7 —3.010—8 12 12 3.210—8
14 10 —1.5,0—8 4 0 13 13 —1.1;,—8 10 10 6.70—9 | 9 10 ~3.510—9 6 6 1.7,0—8
15 13 —1.1;,—8 6 .0 14 14 —1.1,4,—8 11 10 3.510—9 8 9 —3.010—9 6 11 7.50—9

