COLLECTED ALGORITHMS FROM CACM

ALGORITHM 87

PERMUTATION GENERATOR

Joun R. HowkeLL

Orlando Aerospace Division, Martin Marietta Corp.,
Orlando, Florida

procedure PERMUTATION (N, K);
value K, N; integer K; integer'arruy N;
comment This procedure generates the next permutation in
lexicographic order from a given permutation of the K marks
0,1, .-, (K—1) by the repeated addition of (K—1) radix K.
The radix K arithmetic is simulated by the addition of 9 radix
10 and a test to determine if the sum consists of only the original
K digits. Before each entry into the procedure the K marks
arc assumed to have been previously specified either by input
data or as the result of a previous entry. Upon each such entry a
new permutation is stored in N|1] through N[K]. In case the
given permutation is (K-1), (K~2), .-, 1, 0, then the next
permutation is taken to be 0, 1, --. , (KW —=1). A Forrtran
subroutine for the IBM 7090 has been written and tested for
several examples;
begin integer i, j, carry;
fori:= 1 step 1 until K do
if N[i] — K +1 % 0 then go to add;
for i := 1 step 1 until K do Ni] =1 — 1;
go to exit;
add: N[K] := N[K] + 9;
fori := 1step 1 until K—1 do
begin if K > 10 then go 1o B;
carry := N[K—i41]+10;
B: carry := N[K—i+1]+K;
C: if carry = 0 then go to test;
N[K—i] := N[K—i] + carry,
NIK—i+1] := N[K—i+1] =10 X carry
end i;
test: for i := 1 step 1 until K do if Ni]— (X -1 >0
then go 1o add;
for i := 1 step 1 until K—1 do
for] := i+1 step 1 until K do
if N{i]=NT[j] = 0 then go to add;
exit: " end PERMUTATION GENERATOR

go to C;

CERTIFICATION OF ALGORITHM 87

PERMUTATION GENERATOR [John R. Howell,
Comm. ACM, Apr. 1962]

D. M. Cornisox

Elliott Bros. (London) ILtd., Borchamwood, Ilerts.,
Ingland

The array N was removed from the value list in order that the
permutations might be available outside the procedure. The
algorithm was then run successfully with the Llliott ALGor trans-
lator on the National-Elliott 803. It was rather slower than
Algorithm 86.

87-P 1- R1

CERTIFICATION OF ALGORITHM 87

PERMUTATION GENERATOR [John R. Howell,
Comm. ACM (Apr. 1962)]

G. F. Scurack and M. SHIMRAT

University of Alberta, Calgary, Alb., Canada
PERMUTATION GENERATOR was translated into FORTRAN

for the IBM 1620 and it performed satisfactorily. The algorithm

was timed for several small values of n. For purposes of comparison

we include the times (in seconds) for PERMULEX (Algorithm
102).

n 3 4 5 6 7

PERMUTATION GENERATOR 3 41 558 — —
PERMULEX | — 3 6 37 278
As can be seen from this table, PERMUTATION GENERATOR, is
considerably slower. It is probable that one eould speed up
PERMUTATION GENERATOR to a great extent by rearranging
the algorithm in such a manner that the digits of a number to a
certain base are permuted rather than the elements of a sequence.

REMARKS ON:

ALGORITHM 87 [G6]

PERMUTATION GENERATOR
[John R. Howell, Comm. ACM & (Apr. 1962), 209]

ALGORITHM 102 [G6]

PERMUTATION IN LEXICOGRAPHICAIL ORDER
[G. F. Schrak and M. Shimrat, Comm. ACM & (June
(1962), 346)

ALGORITHM 130 [G6]

PERMUTE
[Lt. B. C. Eaves, Comm. ACM & (Nov. 1962), 551]

ALGORITHM 202 [G6]

GENERATION OF PERMUTATIONS IN

LEXICOGRAPHICAL ORDER
[Mok-Kong Shen, Comm. ACM 6 (Sept. 1963), 517]

R. J. Orp-Smrte (Reed. 11 Nov. 1966, 28 Dec. 1966 and
17 Mar. 1967)
Computing Laboratory, University of Bradford, England

A comparison of the published algorithms which seek to generate
successive permutations in lexicographic order shows that Algo-
rithm 202 is the most efficient. Since, however, it is more than twice
as slow as transposition Algorithm 115 [H. F. Trotter, Perm,
Comm. ACM & (Aug. 1962), 434, there appears to be room for im-
provement. Theoretically a ‘best’” lexicographic algorithm
should be about one and a half times slower than Algorithm 115.
See Algorithm 308 [R. J. Ord-Smith, Generation of Permutations
in Pseudo-Lexicographic Order, Comm. ACM 10 (July 1967), 452]
which is twice as fast as Algorithm 202.

COLLECTED ALGORITHMS (cont.)

ALGORITHM 87 is very slow.
ALGORITHM 102 shows a marked improvement.

ALGORITHM 130 does not appear to have been certified before.
We find that, certainly for some forms of vector to be permuted,
the algorithm can fail. The reason is as follows.

At execution of A[f] := r; on line prior to that labeled schell, f
has not necessarily been assigned a value. f has a value if, and
only if, the Boolean expression Blk] > 0 A Blk] < B[m]is true for
at least one of the relevant values of k. In particular when matrix
A isset up by A[i] := 7; for each i the Boolean expression above is
false on the first call.

ALGORITHM 202 is the best and fastest algorithm of the
exicographic set so far published.

A collected comparison of these algorithms is given in Table I.
t. is the time for complete generation of n! permutations. Times
are scaled relative to fz for Algorithm 202, which is set at 100.
Tests were made on an ICT 1905 computer. The actual time fs
for Algorithm 202 on this machine was 100 seconds. 7. has the
usual definition 7, = tn/(n-lu=1).

TABLE 1
Algorithm 16 17 I3 76 7 s
87 118 — — — — —
102 2.1 15.5 135 1.03 1.08 1.1
130 — — — — — —

12.4 100 1.00 1.00 1.00

~I

202 1.

87-P 2-

0

