```
\textbf{for}\ j := 0\ \textbf{step}\ 1\ \textbf{until}\ n\ \textbf{do}\ T[i] := T[i]\ X[i] + A[n-j];
ALGORITHM 91
                                                                           T[i] := T[i] - Y[i];
CHEBYSHEV CURVE-FIT
                                                                           if abs(T[i]) \leqslant TMAX then go to L1;
Albert Newhouse
                                                                            TMAX := abs(T[i]);
University of Houston, Houston, Texas
                                                                           imax := i
                                                                 L1:
                                                                           end i;
procedure CHEBFIT(m, n, X, Y); integer m, n; array X, Y;
                                                                        for i := 1 step 1 until n+2 do
comment This procedure fits the tabular function Y(X) (given
                                                                           begin
 as m points (X, Y)) by a polynomial P = \sum_{i=0}^{n} A_i X^i. This
                                                                            if imax < IN[i] then go to L2;
                                                                            if imax = IN[i] then go to FIT end
  polynomial is the best polynomial approximation of Y(X) in
                                                                            end i;
  the Chebyshev sense. Reference: Stiefel, E. Numerical
                                                                        if T[imax] \times T[IN[i]] < 0 then go to L3;
                                                                 L2:
  Methods of Tchebycheff Approximation, U. of Wisc. Press (1959),
                                                                        IN[i] := imax;
                                                                       go to START;
begin array X[1:m], Y[1:m], T[1:m], A[0:n], AX[1:n+2],
                                                                 L3:
                                                                       if IN[1] < imax then go to L4;
        AY[1:n+2], AH[1:n+2], BY[1:n+2], BH[1:n+2];
                                                                        \textbf{for}\ i:=1\ \textbf{step}\ 1\ \textbf{until}\ n+1\ \textbf{do}\ IN[n+3-i]:=\ IN[n+2-i];
      integer array IN [1:n+2]; real TMAX, H; integer i,
                                                                        IN[i] := imax;
       j, k, imax;
                                                                        go to START;
      comment Initialize;
                                                                 L4:
                                                                       if IN[n+2] \leq imax then go to L5;
      k := (m-1)/(n+1);
                                                                        IN[i-2] := imax;
      for 1 := 1 step 1 until n+1 do IN [i] := (i-1) \times k + 1;
                                                                        go to START;
      IN[n+2] := m;
                                                                        \mathbf{for}\ i := 1\ \mathbf{step}\ 1\ \mathbf{until}\ n{+}1\ \mathbf{do}\ \mathrm{IN}[i] := \ \mathrm{IN}[i{+}1];
                                                                 L5:
      START: comment Iteration begins;
                                                                        IN[n+2] := imax;
      for i := 1 step 1 until n+2 do
                                                                        go to START;
          begin AX[i] := X[IN[i]];
                                                                 FIT: end CHEBFIT
                AY[i] := Y[IN[i]];
                AH[i] := (-1) \uparrow (i-1)
          end i:
      DIFFERENCE: comment divided differences;
                                                                 CERTIFICATION OF ALGORITHM 91
      for i := 2 step 1 until n+2 do
                                                                 CHEBYSHEV CURVEFIT [A. Newhouse, Comm.
                                                                    ACM, May 1962]
          for.j := i-1 step 1 until n+2 do
                                                                 ROBERT P. HALE
          begin BY[j] := AY[j];
                BH[j] := AH[j]
                                                                 University of Adelaide, Adelaide, South Australia
                                                                    The CHEBFIT algorithm was translated into FORTRAN and
          for j := i step 1 until n+2 do
                                                                 successfully run on an IBM 1620 when the following alterations
          begin AY[j] := (BY[j] - BY[j-1])/
                                                                 were made:
                   (AX[j] - AX[j-i+1]);
                                                                 (a) 2nd line after
                 AH[j] := (BH[j] - BH[j-1])/
                                                                                      comment Initialize;
                   (AX[j] - AX[j-i+1])
                                                                     should read
          end j;
                                                                     for i := 1 step 1 until n+1 do IN[i] := (i-1) \times k + 1;
      end i;
                                                                 (b) 2nd and 3rd lines after
      H := -AY[n+2]/AH[n+2];
                                                                            Poly: comment polynomial coefficients;
      POLY: comment polynomial coefficients;
                                                                     should read
      for i := 0 step 1 until n do
                                                                    begin A[i] := AY[i+1] + AH[i+1] \times H; BY[i+1] := 0
          begin A[i] := AY[i] + AH[i] \times H;
                BY[i] := 0
      BY[1] := 1; TMAX := abs(H); imax := IN[1];
                                                                  REMARKS ON ALGORITHM 91
      for i := 1 step 1 until n do
                                                                  CHEBYSHEV CURVE FIT [A. Newhouse, Comm.
          begin
          for j := 0 step 1 until i-1 do
                                                                    ACM 5 (May 1962), 281; 6 (April 1963), 167]
                                                                  Peter Naur (Recd. 27 Sept. 1963)
              BY[i+1-j] := BY[i+1-j] - BY[i-j] \times X[IN[i]];
                                                                  Regnecentralen, Copenhagen, Denmark
              A[j] := A[j] + A[i] \times BY[i+1-j]
                                                                    In addition to the corrections noted by R. P. Hale [op. cit.,
                                                                  April 1963] the following are necessary:
          end i;
                                                                    1. The arrays X, Y, and A cannot be declared to be local within
      ERROR: comment compute deviations;
      for i := 1 step 1 until m do
                                                                  the procedure body.
          begin T[i] := A[n];
                                                                    2. The identifier A must be included as a formal parameter.
```

- 3. It should be noted that the X[i] must form a monotonic sequence.
- 4. **comment** cannot follow the colon following a label. This occurs in four places.
 - 5. The end following go to FIT must be removed.

In addition, a large number of details can be made more concise and unnecessary operations can be eliminated. Also, it seems desirable to produce the maximum deviation as a result.

CERTIFICATION OF ALGORITHM 91 [E2] CHEBYSHEV CURVE-FIT [Albert Newhouse Comm. ACM 5 (May 1962), 281; 6 (April 1963), 167; 7 (May 1964), 296]

J. BOOTHROYD (Recd. 15 May 1967 and 5 Sept. 1967) University of Tasmania, Hobart, Tasmania, Australia.

In addition to the corrections noted by R. P. Hale [op. cit., April 1963] and P. Naur [op. cit., May 1964], the following changes are necessary:

- 1. The first statement should be k := entier((m-1)/(n+1))
- 2. A semi-colon should precede label L1.

With these changes the procedure ran successfully using Elliott 503 Algol.

Although this procedure is an implementation of a finite algorithm, roundoff errors may give rise to cyclic changes of the reference set causing the procedure to fail to terminate.

Algorithm 318 [J. Boothroyd, Chebyshev Curve-Fit(Revised), Comm. ACM 10 (Dec. 1967), 801] avoids this cycling difficulty, uses less than half the auxiliary array space of Algorithm 91 and, on test, appears to be at least four times as fast.