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Preface 

Automatic computing has undergone drastic changes since the 
pioneering days of the early Fifties, one of the most obvious being that 
today the majority of computer programs are no longer written in 
machine code but in some programming language like FORTRAN or 
ALGOL. However, as desirable as the time-saving achieved in this way 
may be, still a high proportion of the preparatory work must be attributed 
to activities such as error estimates, stability investigations and the like, 
and for these no programming aid whatsoever can be of help. In this 
respect, ALGOL, as an internationally standardized notation which avoids 
computer-oriented concepts, provides another advantage, not often 
mentioned, but one which was already the guiding principle at the very 
beginning of the programming language venture: indeed, a correct 
ALGOL program is the abstractum of a computing process for which the 
necessary analyses have already been performed. It is the very purpose 
of this Handbook to establish such abstract formulations of certain 
computing processes. Therefore, numerical methods given in this Hand­
book in the form of ALGOL procedures may be put to immediate use 
wherever ALGOL is known and understood; in fact, application of such a 
method reduces to little more than calling the corresponding procedure. 
This, however, requires that ALGOL programs be so designed that they 
are really abstract in the sense that they do not make use of special 
properties of a specific computer, and yet take into consideration the 
general characteristics of digital computation which are (among others): 
finite precision, finite storage, sequential arrangement of data on an 
external medium, and - not to be forgotten - finite speed. 

Proper use of the procedures published in this Handbook requires 
of course a thorough knowledge of the language ALGOL which is therefore 
described in this introductory volume. This description is not given in 
the style of the ALGOL reports (the most recent ones are reproduced 
in appendix B of this volume) but was modeled after lectures on ALGOL 
given at the Swiss Federal Institute of Technology, Zurich. In this way 
we hope to serve both the beginners as well as the more experienced 
numerical analyst. 

For reasons to be explained later in §4 of this volume, this Handbook 
sticks to SUBSET ALGOL 60, which is the official IFIP subset of ALGOL; 
in fact, all programs to be collected in this Handbook shall either be 
written in this SUBSET or else the deviations shall be clearly stated. 
Consequently the present volume describes SUBSET ALGOL 60 rather 
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than full ALGOL. In addition to other advantages, this restriction allows 
us to give a quantity-oriented description of the language, which from 
the standpoint of a prospective user is to be preferred over a name­
oriented description (which is the only possible way of describing full 
ALGOL). 

It is understood that parallel to and following the development of 
ALGOL, further progress in the field of programming languages (and 
formal languages in general) has been made. We mention how ALGOL 
has stimulated the construction of other algorithmic languages as well 
as the development of new and more efficient methods to translate them 
into machine code. We may furthermore mention another by-product 
of ALGOL, namely the introduction of methods for defining algorithmic 
languages concisely (e.g. the Backus notation). However, a comprehensive 
report on all these activities, as desirable as it might be, would be far 
beyond the scope of this Handbook, which is intended more as a tool 
for users of ALGOL than for those interested in programming languages as 
such. Instead, the reader is referred to Volume Ib (A. A. GRAU, U. HILL, 
and H. LANGMAACK: Translation of ALGOL 60. Edited by K. SAMELSON), 
which deals with the problem of translating ALGOL text into machine 
code; at the end of that volume the reader will find an extensive list 
of references to papers on ALGOL and related topics. 

The author is deeply indebted to Mr. F. T. PARKEL for his help in 
preparing the manuscript and for his invaluable suggestions for im­
proving the text, and to Mr. F. V ANNOTTI for testing the ALGOL programs 
contained in this volume. Furthermore, the author wishes to thank 
Prof. Dr. E. STIEFEL of the Swiss Federal Institute of Technology for 
making available the use of the facilities of the computing center. 

Zurich, September 1966 H. RUTISHAUSER 
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Chapter I 

Introduction 

§ 1. The Concept of Automatic Programming 

"Computing" means to derive, from certain given data, certain results 
according to given rules. If a computation is done with a desk calculator, 
one has the rules in mind and applies them as the computation proceeds, 
taking the intermediate results into consideration. But if the computation 
must be performed by an automatic computer, all actions to be taken 
must be planned beforehand and described for the computer as a sequence 
of instructions, and only then may the computation begin. The entire 
sequence of instructions is called the machine program for that computa­
tion, whereas the term programming pertains to the preparation of the 
program. 

In the early days of automatic computing, programming was con­
sidered as some kind of art, since, indeed, special skill was required to 
describe the entire computation in advance in a rather queer notation. 
With the advent of faster computers, however, the need for writing a 
program for every problem very soon became a nightmare and left no 
room for artistic feelings. The situation required immediate action in 
order to reduce the terrible burden. The relief came through the computers 
themselves: if computers were able to carry such a heavy load of comput­
ing, which before had taken years on a desk calculator, they certainly 
could also assist in writing programs. 

Indeed they could; it turned out that it was possible to write programs 
in a notation somewhere" between" machine code and standard mathe­
matical notation, which was then translated into correct machine code 
by the computer itself with the aid of a special translation program 
(usually called compiler). Any practice which thus relieves the program­
mer from writing in machine code is called automatic programming. 
Started around 1950, mainly by M. V. WILKES in England and G. HOPPER 
in the USA, automatic programming has meanwhile grown into an 
important branch of computing science, and today a multitude of auto­
matic programming systems are in use which differ widely in scope and 
efficiency. 

1 Rutishause:r, Description of ALGOL 60 



2 1. Introduction 

The automatic programming systems intended for numerical problems 
(these are the only ones we are considering here) can be classified into 
three fairly well separated levels: 

a) External machine code 

If the instructions which appear inside the computer as strings of 
digits can be written outside with a mnemonic operation symbol and a 
decimal address, we call this an external machine code. This is a rather 
trivial level of automatic programming since the correspondence between 
the elementary commands in internal and external machine code is 
practically one to one. Accordingly, the translation process is also ex­
tremely simple and sometimes even done by hardware. 

b) Assembly languages 

Notations of this class are similar to machine code insofar as they 
also use single, sequentially executed commands of a specified format. 
However, the addresses of operands and destinations of jumps can be 
denoted by algebraic symbols which may be suffixed (this for referring 
to components of vectors). Such methods of automatic programming 
simplify programming considerably, but on the other hand, the trans­
lation into machine code is already fairly complicated since it requires 
among other things the allocation of addresses. 

c) Algorithmic languages 

This class contains automatic programming systems which use stan­
dard mathematical notation for describing arithmetic operations; in ad­
dition it includes certain dynamic elements for describing the flow of a 
computation. For such languages the programming reduces essentially 
to writing down the formulae that govern the computation. Since this 
must be done anyhow, no further reduction can be expected with respect 
to arithmetics, but great variations in elegance, power and usefulness 
are still possible within this class by virtue of nonarithmetic features. 
Quite naturally the translation of an algorithmic language into machine 
code is extremely complicated, and, accordingly, the corresponding com­
pilers require large storage capacities. 

In order to exemplify the three classes of automatic programming 
systems, we describe here the same piece of computation in the internal 
and external machine code of ERMETH, in the assembly language 
CODAP for the CDC 1604A, and in the algorithmic language ALGOL. 
It should be clear, however, that the merits of the various systems could 
be brought to light only by examples including loops and subroutine calls. 
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ALGOL 

a[101]:= (a [0] +i)t 2; 
a[1]:= sqrt{1+a[101]); 
if c [ - 2] < 0 then 90to label [150]; 
9oto label [75]; 

External machine code 
01 ERMETHl,2 

A 1,0 
+ 4 
S 8980 
X 8980 
S 1,101 
+ 9001 
C 9900 
S 1,1 
A 3,9998 
C+ 9,75 
C 9,150 

Internal machine code 
01 ERMETHl,2 

01 1 0000 02 0 0004 
19 0 8980 04 0 8980 
19 1 0101 02 0 9001 
21 0 9900 00 0 0000 
19 1 0001 01 3 9998 
22 9 0075 21 9 0150 

CODAp3 

LDA A 
FAD J 
STA TEMP 
FMU TEMP 
STA A+101 
FAD ONE 
STA TEMP 
ENA TEMP 
RTJ SQRTF 
RTJ ERROR 
STA A+1 
LDA C-2 
AJP M LABEL+150 
AJP P LABEL + 75 

1 The electronic computer ERMETH was constructed 1953-1956 under the 
direction of Prof. E. STIEFEL and Prof. A. P. SPEISER in the Department of Applied 
Mathematics (Swiss Federal Institute of Technology, Ziirich). The ERMETH was 
in operation from 1956 until 1963; since 1960 it had an ALGOL compiler designed 
by Dr. H. R. SCHWARZ. 

2 The external and internal operation symbols of the ERMETH are: AI 01 : 
clear and add; S119: store; + 1 02: floating add; xl 04: floating multiply; C121: 
jump; C + 122: jump if positive. The digits following the operation symbol denote 
index (B-line) and address (these two are separated by a comma in the external 
notation). At 9900 begins the square root routine (with automatic return), and 
9001 contains the floating point constant 1. It is assumed that the addresses of 
a [0], C [0] and label [0] are stored in index registers 1, 3, 9 respectively, and that i 
is stored in storage position 4. For more details on ERMETH see J. R. STOCK [36]. 

3 The operation symbols of CODAP [11] are: LDA: clear and add; FAD: 
floating add; FMU: floating multiply; STA: store; RT J: jump with automatic 
return; ENA: enter address of operand for the subsequent function call; AJP: 
conditional jump (P if positive, M if negative). 

1* 



4 I. Introduction 

§ 2. Historical Remarks on Algorithmic Languages 

The very first attempt to devise an algorithmic language was under­
taken in 1948 by K. ZUSE [45]. His notation was quite general, but the 
proposal never attained the consideration it deserved. 

In 1951 the present author tried to show that in principle a general 
purpose computer could translate an algorithmic language into machine 
code 1. However, the algorithmic language proposed in this paper was 
quite restricted; it allowed only evaluation of simple formulae and auto­
maticloop control (it contained essentially the for-statement of ALGOL 60). 
Besides that, the translation method was intermixed with the idea of a 
stretched program, which at that time certainly had some merit as a time­
saving device (see [27J) but was not essential for the purpose to be 
achieved. For these and other reasons this paper did not receive much 
attention either. 

In 19542 CORRADO BOEHM [1 OJ published a method to translate al­
gebraic formulae into computer notation. He considered neither sub­
scripted variables nor loop control, but his method to break up formulae 
into machine instructions was at this stage a noteworthy step towards 
the pushdown methods described by SAMELSON and BAUER in [32,33]. 
Further early attempts to translate mathematical formulae into machine 
code were made in 1952 by A. E. GLENNIE [15J in England and in 1953 
by A. A. LIAPUNOV 3 in Russia. 

Thus by 1954 the idea of using the computer for assisting the pro­
grammer had been seriously considered in Europe, but apparently none 
of these early algorithmic languages was ever put to actual use. 

The situation was quite different in the USA, where an assembly 
language epoch preceded the introduction of algorithmic languages. To 
some extent this may have diverted attention and energy from the 
latter, but on the other hand it helped to make automatic programming 
popular in the USA. Thus, when in 1954 LANING und ZIERLER [IJ pre­
sented their algorithmic language - the first one ever actually used -
and shortly thereafter the IBM FORTRAN System [19J was announced, 
the scientific world was prepared for this new concept. 

Meanwhile at Darmstadt an international symposium on automatic 
computing was held in Oct., 1955 4, where, among other things, algorith­
mic languages and their translation into machine code were also dis­
cussed. Several speakers stressed the need for focusing attention on 

1 Lecture at the GAMM (Gesellschaft fiir angewandte Mathematik und Mecha­
nik) meeting, Freiburg i. Br. March 28- 31, 1951. Published in [26J. 

2 The paper [10] was officially presented at the ETH on July 10, 1952, as a 
thesis. 

3 Cited in the introduction to ERSHOV [13]. 
, The proceedings of this meeting are collected in [18J. 
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unification, that is, on one universal, machine-independent algorithmic 
language to be used by all, rather than to devise several such languages 
in competition. This became the guiding idea of a working group called 
the GAMM Subcommittee tor Programming Languages, which was set up 
after the Darmstadt meeting in order to design such a universal algorith­
mic language. 

This subcommittee had nearly completed its detailed work in the 
autumn of 1957, when its members, aware of the many algorithmic 
languages already in existence, concluded that, rather than present still 
another such language, they should make an effort towards worldwide 
unification. Consequently, they suggested to Prof. J. W. CARR, then 
president of the ACM (Association for Computing Machinery). that a 
joint conference of representatives of the ACM and the GAMM be held 
in order to fix upon a common algorithmic language. This proposal 
received vivid interest by the ACM. Indeed, at a conference attended 
by representatives of the USE, SHARE and DUO organisations and of 
the ACM, the conferees had likewise felt that a universal algorithmic 
language would be very desirable. As a result of this conference, the 
ACM formed a committee which also worked out a proposal for such a 
language. 

§ 3. The ALGOL Conferences of 1958, 1960, 1962 

At that point, direct contact between the GAMM subcommittee and 
the ACM committee was established through F. L. BAUER in April, 1958, 
when he presented the GAMM proposal at a Philadelphia meeting of the 
ACM group. A comparison of the proposals of the ACM and the GAMM 
indicated many common features. The ACM proposal was based on ex­
perience with several successful algorithmic languages. On the other 
hand, the GAMM subcommittee had worked for a much longer time at 
their proposal and had from the very beginning the universality of the 
language in mind. 

3.1. ALGOL 58 

Both the GAMM and ACM representatives felt that, because of the 
similarities of their proposals, there was an excellent opportunity for 
arriving at a unified language. They felt that a joint working session 
would be very profitable and accordingly arranged for a conference to 
be attended by four members of the ACM committee and four members 
of the GAMM subcommittee. 

The meeting was held at Zurich, Switzerland, from May 27 until 
June 2, 1958, and was attended by F. L. BAUER, H. BOTTENBRUCH, 
H. RUTISHAUSER and K. SAMELSON of the GAMM subcommittee and by 
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J. BACKUS, C. KATZ, A. J. PERLIS and J. H. WEGSTEIN of the ACM com­
mittee l . It was agreed that the contents of the two proposals should 
form the agenda of the meeting and the following objectives were agreed 
upon: 

a) The new language should be as close as possible to standard 
mathematical notation and be readable with little further explanation. 

b) It should be possible to use it for the description of numerical 
processes in pUblications. 

c) The new language should be readily translatable into machine 
code by the machine itself. 

At this conference it was soon felt that the discrepancies between 
the notations used in pUblications on the one hand and the characters 
available on input/output mechanisms for computers on the other hand 
were a serious hindrance and might virtually prevent agreement upon a 
universal algorithmic language. It was therefore decided to disregard 
printing usage and properties of input/output mechanisms and to focus 
attention upon an abstract representation (in the sense of a defining 
standard), called a reference language, from which appropriate publication 
and hardware languages might be derived later as isomorphic descendants 
of the reference language 2. The notion was, therefore, that reference, 
publication and hardware languages should be three levels of one and 
the same language; the conference, however, would then discuss only 
the reference language. Accordingly, the algorithmic language ALGOL, 
which was agreed upon at this conference and published in the ALGOL 
report [5], is defined only on the reference level. 

After publication of the ALGOL report [5] much interest in the lan­
guage ALGOL developed. At the initiative of P. NAUR an ALGOL Bulletin 
[2] was issued which served as a forum for discussing properties of the 
language and for propagating its use. The Communications of the ACM 
introduced an algorithm-section, in which numerical processes are de­
scribed in terms of ALGOL. Elsewhere ALGOL was also used more and 
more for describing computing processes. 

1 In addition to the members of the conference, the following persons parti­
cipated in the preparatory work of the committees: GAMM: P. GRAEFF, P. LXUCH­
LI, M. PAUL, F. PENZLIN; ACM: D. ARDEN, J. MCCARTHY, R. RICH, R. GOODMAN, 
w. TURANSKI, S. ROSEN, P. DESILETS, S. GORN, H. HUSKEY, A. ORDEN, D. C. 
EVANS. 

2 For the relation between reference, publication and hardware language see [5]. 
It should be recognized that experience has shown that ALGOL programs may well 
be published in the reference language, and therefore extra publication languages 
are in fact unnecessary. On the other hand, hardware languages have proved 
necessary to such an extent that it was decided to standardize a few carefully 
selected hardware representations of the ALGOL symbols (cf. section 7.4). 
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On the other hand it was soon found that certain definitions 
given in the ALGOL-58 report were either incomplete or even contra­
dictory or otherwise unsatisfactory for the description of numerical pro­
cesses. As a consequence many proposals were made to remove these 
defects!. 

3.2. ALGOL 60 

In view of the constructive criticism that evolved and the proposals 
made, it was decided that another international ALGOL conference should 
take place. Accordingly, the GAMM subcommittee organized a prelim­
inary meeting at Paris in Nov. of 1959, attended by about 50 participants 
from Western Europe, from which 7 delegates for the final ALGOL 
conference were selected. The ACM committee likewise selected 7 dele­
gates at a preparatory meeting held in Washington D.C. at the same 
time. Both the European and the USA delegation made proposals for 
removing the inconsistencies from the ALGOL report and also for making 
changes in the language. These proposals took the criticisms as much as 
possible into consideration. 

The conference, held at Paris, Jan. 11-16, 1960, was attended by 
J. W. BACKUS, F. L. BAUER, J. GREEN, C. KATZ, J. MCCARTHY, P.NAUR, 
A. J. PERLIS, H. RUTISHAUSER, K. SAMELSON, B. V AugUOIS, J. H. WEG­
STEIN, A. v. WIJNGAARDEN, M. WOODGER 2• The proposals worked out 
prior to the conference again formed the agenda of the meeting, but in 
addition the conferees had at their disposal a completely new draft 
report prepared by P. NAUR, which served as a basis for discussion during 
the conference. 

From the beginning it was obvious that rather than just adding a few 
corrections to ALGOL 58, it was necessary to redesign the language from 
the bottom up. This was done, and accordingly ALGOL 60, as the language 
emerging from the Paris conference is officially called, was in many 
respects entirely different from ALGOL 58. It is defined on the reference 
level in the ALGOL-6o report [6J edited by P. NAUR. Since publication 
of this report, ALGOL 58 has become obsolete, but many of its features 
have been carried over into other algorithmic languages. 

3.3. The Rome amendments of 1962 

Soon after the ALGOL-60 conference a number of inconsistencies were 
again found in the new ALGOL report. Most of them were just mistakes, 
but others led to discussions which revealed a considerable conceptual 

1 Most of these proposals have been published in the Comm. of the ACM, Vol. 2 
(1959) and/or in the ALGOL Bulletin Nr. 7· 

2 W. TURANSKI of the American delegation was fatally injured in an auto­
mobile accident just prior to the Paris conference. 
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divergence among the experts, and it proved impossible to bridge the 
gap between the opposite interpretations of the ALGOL-60 report. It was 
therefore decided to seize the opportunity when most of the members 
of the ALGOL-60 conference would be attending an IFIP (International 
Federation for Information Processing) meeting at Rome to discuss these 
discrepancies. A formal ALGOL meeting, attended by F. L. BAUER, J. 
GREEN, C. KATZ, P. NAUR, K. SAMELSON, J. H. WEGSTEIN, A. v. WIJN­
GAARDEN, M. WOODGER, R. KOGON, R. FRANCIOTTI, P. Z. INGERMAN, 
P. LANDIN, M. PAUL, G. SEEGMUELLER, R. E. UTMAN and W. L. v. D. 
POEL was held on April 2-3, 1962, at Rome. 

At this meeting the known mistakes and inconsistencies were cor­
rected as far as agreement could be obtained, and a corrected report, 
called the Revised ALGOL Report [7J (in the following abbreviated RAR), 
was issued under the auspices of the IFIP, which meanwhile had taken 
over the responsibility for the further maintenance and development of 
ALGOL. At the same time a list of the corrections was published [40J. 

However, even the Revised ALGOL Report leaves the following ques-
tions still open: 

a) Side effects of function designators. 

b) The call by name-concept. 

c) Static or dynamic own-concept? 

d) Static or dynamic for-statement? 
e) Conflicts between specifications and declarations. 

§ 4 . .ALGOL Dialects and the IFIP Subset of .ALGOL 60 

Partly because of the uncertainty caused by the still unsettled issues 
of ALGOL as mentioned in 3.3 above, partly because some of the more 
sophisticated features of ALGOL 60 are hard to implement, only few (if 
any) compiler makers have so far implemented (i.e. built compilers for) 
the full language ALGOL 60. The worst effect of this is not that the lan­
guage cannot be fully used - in fact ALGOL offers still enough advantages 
to make its implementation highly desirable - but that different imple­
mentors make different restrictions and thus create many dialects of 
ALGOL. 

Usually such dialects exclude the use of the more sophisticated fea­
tures of ALGOL (recursive procedures, the own-device) besides restricting 
the use of types (d. 8.1). But only too often such dialects have been 
"enriched" by nOn-ALGOL features such as the format declaration of 
FORTRAN and the use of lists. As useful as such extensions may seem 
for the individual user, the net effect is that they destroy the universality 
of the language, and this is much worse than certain inconveniences in 
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the use of the present ALGOL. To correct this very unsatisfactory situa­
tion, it was concluded that, insofar as many implementors are virtually 
forced to make restrictions, they should at least be urged to make iden­
tical restrictions and of course no extensions. 

To achieve this, it was decided that the IFIP should issue an official 
set of restrictions which define a true subset of ALGOL 60 as defined by 
the RAR. This subset should be easier to implement and not contain 
the controversial concepts but still be sufficient for most numerical 
applications. 

At a first meeting of the ALGOL working group of IFIP (W. G. 2.1), 
held on August 28-30, 1962, in Munich, the then available subsets 
SMALGOL [4J and ALCOR [9J were reviewed and the possibilities for 
coalescing them were discussed. At further meetings of the W. G. 2.1 
at Delft (Sept. 10-13, 1963) and Tutzing (March 16-20,1964) the final 
decision was made as to what features of ALGOL 60 should be excluded 
from the official IFIP subset. Since then the IFIP council has approved 
this decision and released a Subset Report [20J (in the following abbre­
viated as SR) which defines the official IFIP subset through restrictions 
added to the full language as defined by the RAR. The official name of 
this subset is SUBSET ALGOL 60. 

This official subset excludes the controversial features of ALGOL 60 
but is still sufficient for most numerical applications. It is contained in 
most other subsets that have been created hitherto; accordingly, most 
existing compilers can translate programs written in SUBSET ALGOL 60. 
This is one of the reasons why this Handbook sticks to the subset: 
Despite the nearly babylonic confusion with respect to the abilities and 
restrictions of the presently existing ALGOL compilers, the programs 
published in this Handbook will run successfully with most existing 
ALGOL compilers without further adjustments. This, as we know, is far 
from being true for ALGOL programs that make extensive use of the 
more sophisticated features of ALGOL 60. 

But there are also other reasons why we restrict ourselves to SUBSET 
ALGOL 60: If one uses only this subset, one may design a special subset­
compiler, which, because it need not take care of the controversial con­
cepts of ALGOL, will require less storage space and produce more efficient 
object programs. 

§ 5. Preliminary Definition of ALGOL 

The description of a complete calculation in terms of ALGOL is called 
an ALGOL program. It consists of a sequence of statements and declara­
tions which are separated from each other by semicolons, the whole 
being enclosed by begin and end. Upon execution of the ALGOL 
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program, the statements call for certain well-defined actions, whereas 
declarations serve merely to state the occurrence of certain quantities. 

In this section we describe some of the features of ALGOL, however 
without being strict or complete. 

5.1. Arithmetic expressions and assignment statements 

5.1.1. The elimination of the quadratic term from a cubic equation 

x3+ax2+bx+c= ° is achieved by a substitution x= y- ; which leads 

to the equation y3+py+q= 0, where the new coefficients p, q are given 
as p=b-a2/3, q=c-ab/3+2a3/27. In ALGOL the computation of p, q 
for given values of a, b, c is described as 

p : = b - a t 2/3 ; 

q:= c-aXb/3 +2xat3/27; 

This is not a complete ALGOL program but just a small section of one, 
namely two assignment statements. They are executed in the order given 
and thus produce the coefficients of the reduced equation. The action 
to be taken by the corresponding object program in the computer is: 
Take the values a, b, c from the respective storage positions, compute p 
and q and store the resulting values in the positions reserved for p and q. 
5.1.2. The general idea of such an assignment statement is that the value 
of the variable on the left side of the assignment symbol: = is computed 
as defined by the formula on the right side. Such formulae, in ALGOL 

called arithmetic expressions, are written essentially in standard mathe­
matical notation (except that the multiplication symbol X may not be 
omitted and that an exponentiation symbol t is used instead of raising 
the exponent) and use the following elements: 

a) OPeration symbols + - X / t and parentheses ( ). 
b) Numerical constants, e.g. 

131 .0325 34·5678 9.87654103, 

with a decimal point (not a comma!) as separator between integral and 
fractional part, and (if needed) with a scaling factor expressed as a power 
of ten (the symbol 10 indicates the beginning of the exponent part). 

c) Simple variables represented by arbitrary names like 

x p ys kl apex zrl05 i777i alpha certif, 

which are strings of letters, possibly including decimal digits, but always 
beginning with a letter. Such a variable represents the value that has 
been assigned to it before. 
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d) Subscripted variables. In contrast to the usual subscript notation, 
e.g. ai' bk +l , c2,j' dik , subscripts are written in ALGOL on the normal line 
level and enclosed in brackets. Accordingly the above examples - which 
denote components of vectors, matrices, etc. - appear in ALGOL as 

a [i] b[k+l] c [2, j] d[j[k]J, 

and v[k]:= 0 is the ALGOL equivalent of setting the k-th component of 
a vector v to zero. 

e) Standard functions. The 9 names 

sin cos sqrt ln exp arctan abs sign entier 

refer to the so-called standard functions. As an example sin (x+ y) re­
presents the sine of x+y, and entier(xj2) means the largest integer not 
exceeding xj2. 

5.1.3. Let us now give a few examples: 

a) The length of a vector (Xl' x2 , xa) in 3-dimensional space is given 
by the formula s=Vxi+x~+x:. In ALGOL s is computed by the assign­
ment statement 

b) The angle alpha of a triangle given with sides a, b, c is defined as 

( alPha) V(S-C)(S-b) 
tan -2- = s(s-a) ' where 2s=a +b +c. 

In ALGOL we have to compute and assign s first (because only then 
can its value be used) before evaluating the expression defined by the 
given equation for alpha: 

s:= (a+b+c)j2; 

alpha:= 114.59155903 X arctan (sqrt ((s - c) X (s - b)j(s X (s - a)))); 

(alpha in hexagesimal degrees but with decimal fractions). 
Thus it appears that ALGOL is somewhat less compact and elegant 

than standard mathematical notation, but this is the price to be paid 
in order that all symbols can be written straightforward on the normal 
line level (which of course is an indispensable requirement for mechanical 
reading devices). 

c) Statements like 

are allowed in ALGOL. This statement increases the value of k by 1. 
Indeed, it says that the value of k is taken, 1 added to it, and the result 
is again assigned to k. Of course, the previous value of k is destroyed by 
this operation. 
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5.2. For-statements 

If all components of a vector v must be set to zero, the operation 
v[k]:= 0 must be performed once for everyone of the values k=1, 2, 
... , n. In ALGOL we have a shorthand notation for this: 

for k:= 1 step 1 until n do v[k]:= 0 

In fact, as the prefix for ... do says, it performs the statement v [k] := 0 
n times with the prescribed values of k. 

As a further example, consider the calculation of the length of a 
vector v in n-space. If n is variable, the expression v~+v~+ ... +v! 
cannot be transcribed directly into ALGOL but must be evaluated by a 
summation loop: Let s=v~+v~+ ... +vLl> then the next partial sum 
is obtained by adding v~ to s, and this can be described in ALGOL as 
s:= s+v[k] t2. To obtain the sum, we must simply repeat this opera­
tion for k = 1, 2, ... , n, and start with s= 0: 

s:= 0; 

for k:= 1 step 1 until n do s:= s+v[kJt2; 

The general rule is that a for-statement consists of a for-clause (the 
part between for and do inclusive) followed by a statement. The for­
clause says how often and for what values of the controlled variable (this 
is the variable following for) the statement should be executed. 

It should be recognized, however, that the controlled variable need 
not be a subscript (although it usually is) but can also take on non­
integer values. As an example, the following two statements compute the 
sum of the values of the function eX/x at x= 0.01,0.02, ... ,10.00: 

s:= 0; 
for x:= 10 step - 0.01 until 0.01 do s := s + exp (x)/x 

Here we let x run backwards in order to reduce the influence of the 
roundoff errors in the summation. But since now the controlled variable 
is of real type, also its stepping causes rounding errors, which may lead 
to incorrect termination of the loop (d. 30.5.1). 

5.3. Compound statements 

If a more complicated computation, i.e. a sequence of statements 
rather than a single statement, must be executed repeatedly, these state­
ments must be enclosed by begin and end 1, and the for-clause must 

1 Since the semicolons are not constituents of the single statements but rather 
separators between them, no semicolon is required before the end. 
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be placed in front of the begin, e.g. 

for k:= 1 step 1 until n-1 do 
begin 

e[k]:= (e[k]jq[k]) xq[k +1]; 
q[k +1] := (q[k +1] - e[k]) +e[k +1] 

end 

13 

In fact, by embracing an arbitrary sequence of statements (these may 
be all sorts of statements) by begin and end, a new kind of statement, 
called compound statement, is created. Therefore, if such a compound 
statement is preceded by a for-clause, it is by definition repeated as a 
whole. Thus the above example has for n= 4 the same effect as the 
following sequence of statements: 

e[1]:= (e[1] j q[1J) xq[2J; 
q[2J:= (q[2J-e[1J)+e[2J; 
e[2J := (e [2J j q[2J) xq[3J; 
q[3J:= (q[3]-e[2J)+e[3J; 
e[3J:= (e[3] jq[3J)xq[4J; 
q[4J:= (q[4J-e[3J)+e[4J; 

Likewise the multiplication of an nxn-matrix A=(a[i,kJ) with a 
-+ 

vector b= (b [iJ), yielding a vector c = (c [iJ), is described by 

for i:= 1 step 1 until n do 
begin 

s:= 0; 
fork:=1 step 1 untilndos:=s+a[i,k]xb[k]; 
c[iJ:=s 

end 

Indeed, every execution of the compound statement computes one, name­
ly the i-th, component of the product vector. 

5.4. Labels and goto-statements 

Normally the statements of an ALGOL program are executed in the 
order in which they are written. However, this order may be interrupted 
by placing a goto-statement, e.g. 

goto maior 

at the place where the interruption should take place and a correspond­
ing label and colon, 

maior: 
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in front of the statement with which the computation should proceed 
after the interruption. 

Consider, for instance, the sequence of statements 

entry: aux:= (a+b)J2; 
b:= sqrt(a xb); 
a:= aux; 
goto entry 

Assume now that execution of the program in which these statements 
are embedded has proceeded to the label entry. Then the next three 
statements are executed, after which goto entry is encountered. This 
has the effect that the computation begins again after the label entry, 
from which it proceeds again downwards. Thus obviously those four 
statements are executed over and over again with infinite repetition; 
i.e. the computation is caught in a closed loop, from which it can be 
freed only by intervention of the operator. 

Such closed loops can be avoided by making jumps conditional, as 
will be shown below in 5.5 and later in Chapter IV (in fact, goto-state­
ments are only useful in conjunction with conditional statements). 

5.5. The if-statement 

The execution of a statement can be made conditional by placing an 
ii-clause in front of it, e.g. 

if x=o then x:= 10- 20 

This obviously means that x:= 10-20 is executed if and only if x was 
exactly zero and may serve to avoid trouble in a later division. Likewise 

if abs (a - b) >10- 9 then goto entry 

makes the jump to entry subject to the condition Ja-bJ >10- 9 and 
thus could be used to prevent the closed loop in the example given in 
5.4 above. 

If an if-clause is placed in front of a compound statement, then the 
execution of the whole is subject to the condition stated in the if-clause. 
As an example, 

if abs (t) < ln (1 + theta) then 
begin 

y:=O; 
for p:= m step -1 until 0 do y:= yxt+c[p] 

end 



§ 5. Preliminary Definition of ALGOL 15 

evaluates the polynomial cO+C1t+C2t2+ ... +cmtm (and assigns the 
result to y) if and only if I tl < In (1 + theta). 

In the general case, an if-clause may be placed in front of any state­
ment which is not already an ii-statement. In other words, the construction 
if X= 0 then if z> sin (y) then ... is forbidden. However, it is also un­
needed since ALGOL permits achieving the intended effect by conjunction 
of the two conditions: 

if x=OAz>sin(y) then ... 

This if-clause means that the statement following then is executed if 
and only if both conditions X= 0 and z> sin (y) hold (compare, however, 
28.4·3)· 

5.6. If-else-statements 

Sometimes one wants to extend the if-statement by saying also what 
should be done if the condition stated in the if-clause does not hold. 
To achieve this, we do not end the if-statement with a semicolon or end 
but with a symbol else, and then append another statement, e.g. 

if p>q then 1:= p else 1:= q 

In such a case, always one of the two statements is executed, namely 
the first if the condition holds, the second if the condition does not hold. 
Thus the above statement assigns the larger of the two values p, q to 
the variable I. 

In the general case, the if-else-statement may have the form 

if C then U else 5 

where C denotes a condition, U any statement not beginning with if or 
for, and 5 any statement whatsoever. 

An application of this possibility is shown by the following piece of 
program which describes the computation of the largest real root of a 
cubic equation x3 +ax2+bx+c=O. It should be recognized, however, 
that this is still not a complete program since it contains neither de­
clarations nor input- and output-operations: 

begin 
p : = b - a t 2/3 ; 
q:= c-axb/3 +2xat3/27; 
disc:= (q/2) t2 + (P/3) t3; 
if q=OAp>O then x:= -a/3 

else 
if q=OAp;;,o then x:= -a/3+sqrt(-p) 

first alternative of an 
if -else-statement 

second alternative 
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else 
if disc> 0 then 
begin 

u := sqrt (disc) + abs (q/2); 
v:= utO.3333 3333 33333; 
x := - a/3 - (v - p/(3 xv)) x sign (q) 

end 
else 

begin 
phi: = arctan (2 X sqrt (- disc) /q) ; 

third 
alternative 

if q>O then phi:= phi- 3.14159265358979; 
x := - a/3 +2 xsqrt (abs (P/3)) x cos (Phi/3) I fourth 

alternative 
end 

end 

It should be recognized that in a case like P=1, q=O, where the 
conditions for both the first and third alternative hold, by definition 
only the first alternative is actually executed. 

5.7. Declarations 

A full ALGOL program is essentially a sequence of statements which 
are separated from each other by semicolons, the whole being enclosed 
by begin and end. In addition, however, the sequence must contain 
declarations between the first begin and the first statement of the 
program; these serve to state certain properties of the variables (and 
other quantities) occurring in the program. Example: 

begin 
real x, y, t, pz, gyrosc; 
integer i, j, k; 
array a[1 :9J, b, c, d[0:5J, u, v[1 :20,1 :30J; 
integer array t, g [ -1: 6J; 
x:=-1.5; 

end 

} dedamHon, 

} statements of 
the program 

In this program, the declarations at the beginning state that the real 
(floating point) variables x, y, t, pz and gyrosc and the integer-valued 
(fixed point) variables i, j, k will occur. In addition, the arrays a, b,c,d,t,g 
with one subscript (vectors) and the arrays u, v with two subscripts 
(matrices) are declared and can therefore be used in the program. The 
numbers in the brackets denote the lower and upper bounds for the 
subscripts of these arrays, e.g. the first subscript of the arrays u, v can 
run from 1 to 20, the second from 1 to 30. 
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These declarations do not necessarily mean that all the declared 
variables actually occur in the program or that all components of the 
declared arrays must actually be used. But a variable which has not 
been declared cannot be used, and a component of an array whose sub­
script is beyond the declared limits cannot be used. 

To be precise, declarations can appear not only after the first begin 
of a program, but also after a later begin (this introduces the block­
concept, for which see § 42). In an array declaration following a later 
begin the subscript bounds may depend on calculated values, e.g. 

begin 
integer n, m, p; 
n := entier (sqrt (1 + exp (6))); 
begin 

arraya[1:n,1:nJ; 

5.8. Complete programs 

An ALGOL program cannot be complete unless it also contains state­
ments which perform the transfer of initial data and results of a com­
putation from and to the outside world. In ALGOL such input- and output­
operations may be performed via the standard IIO-procedures (for the 
details of which see Chapter VIII). For the moment let us see how the 
cubic-equation program of 5.6 may be completed by adding the necessary 
declarations and I/O-operations: 

begin 
real a, b, c, p, q, u, v, phi, disc, x ; 
inreal(1, a) ; 
inreal(1, b) ; 
inreal(1,c); 

outreal (2, x) 
end 

2 Rutishauser, Description of ALGOL 60 

) 
input of the coefficients a, b, c 
via channel 1 . 

} Insert here the piece of 
program given in 5.6 

output of x via channel 2 



Chapter II 

Basic Concepts 

The definition of a programming language consists of several parts, 
namely 

a) The definition of the basic symbols, which are the atoms of the 
language. 

b) The syntax (or syntactic rules); these are the rules which define 
how the basic symbols can be concatenated to larger units (in the follow­
ing called syntactic objects) and finally to complete ALGOL programs. 

c) The semantics (or semantic rules), i.e. the rules which define what 
actions a given ALGOL program (or section hereof) should initiate at 
execution time. 

In the following a semiformal definition of the language SUBSET 
ALGOL 601 on the reference level is given together with examples which 
show the properties and possibilities of the language. Since the sub­
sequent text deals exclusively with SUBSET ALGOL 60, the word ALGOL 

will from now on automatically pertain to this subset, while the term 
full ALGOL will be used where, as an exception, reference to the language 
defined by the RAR must be made. 

§ 6. Auxiliary Conventions 

6.1. Syntactic forms 

A new class r of syntactic objects will be introduced by its syntactic 
form, which is a sequence of basic symbols and/or capital letters 2. The 
syntactic form defines the general element of a new class of syntactic 
objects as follows: Basic symbols represent themselves, but a capital 
letter stands for an arbitrary element of the respective class of syntactic 
objects. Where the new class is defined by several syntactic forms 
L1 , L 2 , ••• , it is the union of all subclasses defined by each of the Li' 

Take for instance the syntactic form J[E], where J denotes the class 
"identifier" and E the class "arithmetic expression". Obviously this 
defines a class of syntactic objects which consist of an identifier followed 

1 The official definition of this subset is given only by the two reports RAR 
and SR together. 

2 According to the SR (section 2.1) the capital letters are not basic symbols 
of SUBSET ALGOL 60 and are therefore available for this purpose. 
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by an arithmetic expression in brackets (subscripted variables with one 
subscript), e.g. 

delo [k], merit [x+1], ccit[(k+1) xk/2], d[d[5]]. 

6.2. French quotes 

In order to distinguish between ordinary text and ALGOL text, ALGOL 
programs and parts thereof (down to basic symbols) as well as syntactic 
forms will from now on be enclosed by French quotes « »: 

«goto entry», «P », «aux:= (a+b)/2», «1[E] ». 

It should be clear, however, that this is by no means a rule of ALGOL 
but only an ad hoc construction for avoiding confusion. 

6.3. The ellipsis 

The ellipsis ... will be used in syntactic forms in the sense of obvious 
continuation in order to indicate that certain parts of the syntactic form 
occur with an unspecified number of repetitions, including the degenerate 
case where the number of repetitions is only one. Accordingly a con­
struction such as 

«1[E, E, ... , E]» 

represents the union of all syntactic forms 

(<l[E] », «1[E, E] », «1[E, E, E] », «1[E, E, E, E] », etc. 

6.4. The syntactic diagram 1 

Besides the means described above, new syntactic objects will also 
be defined more precisely by syntactic diagrams. The class of objects to 
be defined is designated by its name in a bold frame, and the arbitrary 
element of this class is obtained by running from the origin 0 in an 
arbitrary way along the arrows to the bold frame, whereby the basic 
symbols found in the circles and rounded boxes and arbitrary elements 
of the classes listed in the rectangular boxes are collected and aligned in 
the order in which they are met. As an example 

orill;melic t%preJ'siofi (cf. ,g. 6') 

Fig. 1 

1 Dipl. lng. A. SCHAr, Director of the Computing Center of the ETH, Zurich, 
proposed this hitherto unpublished modification of the Burroughs Syntactical Chart 
(d. Comm. ACM, Sept. 1961, pp. 393). 

2" 
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defines a new class of syntactic objects which consist of an identifier 
followed by an arbitrary number of arithmetic expressions which are 
separated by commas and enclosed in brackets. It defines therefore the 
same class as the syntactic form «I[E, E, ... , E] )}, namely the class 
"subscripted variable". 

6.5. Undefined situations 

The semantic rules sometimes state that the outcome of a certain 
operation or the effect of executing a certain piece of ALGOL program 
is undefined. This simply means that whenever such a situation is en­
countered in a computation, the further execution of the program is 
unpredictable and in fact may produce any effect a computer is capable 
of. Such a piece of program is therefore incorrect. 

On the other hand, it is not necessarily an error if an ALGOL program 
produces an undefined value during its execution, provided this value is 
not further used by the program. 

§ 7. The Basic Symbols of ALGOL 

7.1. Set of basic symbols 

The set of basic symbols of ALGOL contains l : 

a) All small letters of the Roman alphabet: 

«a)}, «b)}, «C)}, (<i)}, «e)}, «f)}, «g)}, «h)}, (<i)}, «j)}, «k)}, (<l)}, «m)}, «n)}, (W)}, 

«p )}, «q )}, «r>}, «s )}, (<t )}, «u )}, (<V )}, «W)}, « X)}, «Y)}, «z )}. 

b) The decimal digits «O)}, (<1 )}, «2)}, «3 », «4)}, «5 )}, «6)}, «7)}, «8)}, «9)}. 

c) The logical constants «true)} and «false )}. 

d) The arithmetic operators «+)}, «-)}, « X )}, «I)}, «t)}. 

e) The relational operators « = )}, « =l= )}, « < )}, « > )}, « ~ )}, « ~ )}. 

f) The logical operators « -, )}, « A)}, « V)}, «::::> )}, « = )}. 
g) The sequential operators «goto )}, « if», «then )}, « else )}, dor», «do )}. 
h) The separators «, )}, (<. )}, «10 )}, «: )}, «; )}, «: = )}, « U )}, «step )}, « until )}, 

«while)}, «comment)}. 

i) The brackets «()}, «)}, «[)}, «])}, «')}, «')}, «begin)}, «end)}. 

j) The declarators «real», «integer)}, «Boolean», «array)}, 
«switch)}, «procedure)}. 

k) The specificators (<label», «string)}, «value)}. 

1 According to the SR, the symbols ...;- , own and all capital letters are not basic 
symbols of the subset. 
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7.2. Delimiters 

The elements of groups d) through k) are usually called delimiters, 
the others are non-delimiters. In addition, some of the basic symbols 
have individual names: 

10 

slash or solidus 
comma 
period 
base ten 1 

colon 
semicolon 

u 

( ) 
[ ] 

assignment symbol 
space symbol (this is 
used only in strings). 
parentheses 
brackets 
string quotes. 

The 23 underlined 2 English words among the basic symbols are 
called word-symbols. They have been incorporated into the language 
because it was felt that the readability of ALGOL programs would be 
improved if for certain nonarithmetic operations such word-symbols 
expressing the action to be performed were chosen instead of unusual 
symbols like )0( ~, etc. It should be recognized, however, that under­
lining expresses the fact that the word-symbols are atoms of the language 
like other basic symbols and therefore can be neither decomposed nor 
translated into other national languages. 

7.3. Typography 

Where an ALGOL program is written on paper, it is understood that 
the order of the basic symbols in the ALGOL text is the same as the 
conventional order of letters in the plain English text. However, blank 
space 3, change to a new line and indenting of the latter have no signi­
ficance in ALGOL. These devices are syntactically nonexistent in ALGOL 

and can therefore be used freely to improve the readability of ALGOL 

programs without changing their effect. Extensive use of this possibility 
has been made in this volume. 

7.4. Hardware representations 

Few I/O-devices for electronic computers accept all basic symbols of 
ALGOL as given in 7.1 above. Most users of ALGOL are therefore forced 
to take recourse to so-called hardware representations for entering 
ALGOL programs into the computer. This means that they must replace 
the nonavailable symbols occurring in ALGOL text with suitable com-

1 In order to distinguish it from the number (' 10», the base ten should be written 
below the line level. 

2 Because of the difficulty of achieving underlining in printed text, bold face 
(grotesque type) is used throughout this volume instead of underlining. 

3 It should be recognized that the space symbol ('LI» used in strings is considered 
different from a unit of blank space; indeed the former has a very definite meaning. 
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binations of other symbols, but of course only such combinations can 
be used which cannot occur otherwise in an ALGOL program. Examples: 

. - It is general practice to represent this symbol by a colon, followed 
by an equality symbol. 
For I/O by punched cards this symbol is usually represented by 
the combination (f. 

;;:;; In the Bull Gamma 60 computer represented by < = . 

The word-symbols are also a problem, since underlining is usually 
not possible with I/O-mechanisms. To resolve this difficulty, a specific 
symbol not contained in the set of basic symbols (e.g. the apostrophe 
or $) is chosen as an escape symbol with the convention that any word 
enclosed between a pair of escape symbols is considered as underlined. 
Thus « beg in)}, « procedu re )} may be represented by 'begin', $ procedure $ . 

The escape symbol is also used for representing other non-available 
symbols, e.g. 'less' as representative of « < )}. 

The following hardware representations (for punched cards and 5-
channel paper tape) have been accepted as a DIN standard [12]. The 
table given indicates for every basic symbol of SUBSET ALGOL 60 either 
the punching combination for cards and tapes, or else the character 
combination used to circumscribe the basic symbol. For punched cards 
the conventional enumeration of the punched card rows, i.e. 12-11-0-1-
2-3-4-5-6-7-8-9 applies, while for paper tape the 5 channels are enu­
merated 1-2-3-4-5, with the sprocket hole between channels 2 and 3. 
Note that paper tape has the peculiarity that the same punching com­
bination may denote two different symbols, depending upon whether 
the mechanism is on letter-shift (BU) or figure-shift (ZI). Two extra 
punch combinations are reserved for changing the shift. 

a) Symbols which can be punched directly. 

Symbol Tape (ZI) Punched cards Symbol Tape (ZI) Punched cards 

0 2-3-5 0 1-2 11 
1-2-3-5 1 X 1-4-5 11-4-8 

2 1-2-5 2 / 1-3-4-5 0-1 
3 1 3 3-4 0-3-8 
4 2-4 4 1-2-3-4 0-4-8 
5 5 5 2-5 12-4-8 
6 1-3-5 6 10 3-5 
7 1-2-3 7 2-3-4 
8 2-3 8 1-2-4 
9 4-5 9 1-3-4 

2-3-4-5 1 3-8 1 2-4-5 
3-4-5 12-3-8 1-3 2 4-8 2 

+ 1-5 12 

1 = is used only as constituent of the assignment symbol (I: = ». 

2 ' (apostrophe), used as escape symbol. 
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Symbol Tape (BU) Punched 

I 
Symbol Tape (BU) Punched 

cards cards 

a 1-2 12-1 n 3-4 11-5 
b 1-4-5 12-2 0 4-5 11-6 
c 2-3-4 12-3 P 2-3-5 11-7 
d 1-4 12-4 q 1-2-3-5 11-8 
e 1 12-5 r 2-4 11-9 

f 1-3-4 12-6 s 1-3 0-2 
g 2-4-5 12-7 5 0-3 
h 3-5 12-8 u 1-2-3 0-4 

2-3 12-9 v 2-3-4-5 0-5 
j 1-2-4 11-1 w 1-2-5 0-6 
k 1-2-3-4 11-2 x 1-3-4-5 0-7 

2-5 11-3 Y 1-3-5 0-8 
m 3-4-5 11-4 z 1-5 0-9 

b) Auxiliary symbols for 5-channel tape. 

Symbol Punch comb. Meaning 

WR 4 carriage return 
ZL 2 line shift 
ZWR 3 space 
ZI 1-2-4-5 figure shift 
BD 1-2-3-4-5 letter shift 

c) Symbols represented by combinations of other symbols: 

Representation on Representation on 
Symbol Symbol 

tape punched cards tape and punched cards 

10 t 'power' 

< 'less' 

> 'greater' 
(/ ;;:;: 'not greater' 
f) ~ 'not less' 

.- 'equal' 
'(' '(' oF 'not equal' 
') , ') , 'not' 

U ZWR (blank) A 'and' 
V 'or' 
:::J 'impl' 

'equiv' 

d) The 23 word-symbols are all represented by enclosing the words 
in apostrophes instead of underlining them, i.e. « begin» is represented 
by 'begin', «procedure» by 'procedure', etc. 
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§ 8. Values 

Upon execution of an ALGOL program, certain well-defined actions 
take place, the most frequent one being that operations are performed 
upon certain values, whereby other values are produced. These are again 
involved in operations, etc., until the «end» of the program is reached. 
All other operations serve solely to assist in these calculations. 

8.1. Types of values 

The values upon which an ALGOL-program can operate fall into three 
classes! : 

a) The values of type real 2, i.e. the class of real values. 
b) The values of type integer, i.e. the class of all integers. 
c) The values of type Boolean (the logical values true and false). 

Concerning the integers, it should be recognized that the same in-
teger value can either be of integer or real type, depending on how it 
was generated. Which of the two cases actually occurs in a given situa­
tion, is defined by rules of type at appropriate places in the following 
chapters. The distinction between real and integer type is important, 
since in critical cases the results of a computation may depend on it. 

8.2. Computer limitations 

In actual computing, values of real and integer type must be re­
presented by digital numbers (usually real type values by floating point 
numbers, integer type values by fixed point numbers). Consequently, 
such values are subject to computer limitations, i.e. they can be re­
presented only if they remain between certain bounds, and values of 
type real can be represented at best only approximately. Since these 
are facts that we could not hope to alter, it was indispensable that they 
somehow be built into the framework of the language ALGOL, otherwise 
we would have been being utterly unrealistic. As a consequence the 
following rules have been accepted: 

a) A value of type real is considered as inherently inaccurate, i.e. 
as being defined only with finite precision, and arithmetic operations 
performed with them must be assumed to be affected by (usually small) 
roundoff-errors. 

b) Values of both types real and integer can be represented only 
if they remain within certain (computer-dependent) bounds, and it must 

1 Despite the wording used in the RAR, labels are not values in this sense. 
Accordingly, we use here - without changing the content - a different wording 
which does not give labels the status of values. 

2 It has become customary to say the value x is of type T instead of the value x 
belongs to class T. 
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be taken into account that the further course of the calculation is un­
defined as soon as a value exceeds its respective bounds (so-called over­
flow). 

c) On the other hand, it is assumed that arithmetic operations per­
formed with values of type integer are carried out exactly, provided 
the result is again of type integer and remains within the prescribed 
bounds. 

8.3. Consequences of computer limitations 

According to what has been said above, it must be tolerated that an 
ALGOL program may produce results which deviate from the expected 
theoretical values, or that its execution may be discontinued because of 
overflow l . Even worse, the same ALGOL program will usually produce 
different results with different computers, or cause overflow on com­
puter A but not on computer B. 

This seems a hopeless situation, and ALGOL does not give the slightest 
hope for overcoming these difficulties. On the contrary, it is entirely up 
to the numerical analyst to design an ALGOL program such that it pro­
duces useful results on any computer despite the above-mentioned short­
comings. But how this should be achieved is not a question of ALGOL 
and therefore is not treated here, except that we shall indicate in some 
of the programming examples what can be done to overcome the dif­
ficulties associated with computer limitations (d. § 36). 

§ 9. Quantities and their Names 

Whenever a programmer describes a computation in terms of ALGOL, 
he automatically introduces certain quantities which are abstract objects 
distinguished by their names. They serve to facilitate the description of 
the program but obtain their meaning through the program itself (in 
actual computation, these quantities are realized as storage positions or 
groups of storage positions). 

9.1. Kinds of quantities 

The following quantities are used in ALGOL: 

9.1.1. A simple variable is an object to which a value may be assigned 
and then remains associated with it until a further assignment to the 
same variable. 

1 It should be recognized that some of the programs published in this Handbook 
presume that in case of underflow (i.e. the exponent of a floating point number 
exceeds its lower bound) at worst the machine representation of "floating zero" is 
produced. Several of these programs will not work properly with computers that 
produce arbitrary effects upon underflow. 
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9.1.2. An array is a set of elements, called the components of the array, 
everyone of which behaves like a simple variable. The components of 
an array are distinguished by a set of p integers (subscripts) iI' i 2 , ••• , i p , 

where p is called the dimension of the array. If we interpret the sub­
scripts as coordinates in a p-dimensional space, then the entire array 
corresponds to the total of all unit-gridpoints in a p-dimensional hyperbox 

(k=1,2, .. ·,P), 

whose boundaries (i.e. the array bounds ll' l2' ... , lp, ul , u2, ... ,up) are 
given in the corresponding array declaration (d. § 39). 

9.1.3. A label is a designation given to a specific spot in an ALGOL 
program. 

9.1.4. A switch is a one-to-one correspondence between an ordered set 
of n labels and the integers 1, 2, ... , n. 

9.1.5. A procedure is an operator which can operate upon other quantities 
(e.g. compute certain results from given arguments). However, the prop­
erties of procedures can differ markedly from the properties of mathe­
matical functions and operators; in fact, procedures more often resemble 
the subroutines in ordinary machine-code programming. 

9.2. Identifiers 

Quantities can appear in ALGOL programs only through their names, 
which are syntactic objects classified as identifiers . 

. 9.2.1. Examples of identifiers are 

«x7», «a», «Y», «phi», (<vcrit», «pt77tp». 

9.2.2. Identifiers have the syntactic form 

«X» or «XYY ... Y», 

where X stands for an arbitrary letter and every Y means an arbitrary 
letter or digit. Thus an identifier is a sequence of letters and/or digits, 
but always beginning with a letter. Syntactic diagram: 

feller (cl 7.1) 

f------1 dec imll / dig if (cf. 7. 1 ) r----

L identifier I 
Fig. 2 
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The possibility of forming names of more than one symbol gives a 
sufficient supply of names. It allows to circumscribe the capital and 
greek letters (bigm, beta), and to give variables mnemonic names such 
as vcrit. On the other hand it excludes the implied multiplication, since 
e.g. «a b» is always considered as one name and never as the product 
of a with b. 

9.2.3. Semantics. Identifiers may be chosen freely and have, with the 
exception of the identifiers of the standard functions and standard 1/0-
procedures!, no preassigned meaning. However, the same identifier can­
not be used to denote more than one quantity at once (for more details 
see § 42, Semantics of Blocks). 

9.2.4. Restriction. Identifiers may be of arbitrary length, but only the 
leading six characters of an identifier are used for identification (see SR, 
item 2.4.3). Thus two identifiers which agree in the first six characters, 
e.g. 

« output17 » and « outputvalue » , 

are considered identical in the subset (but not in full ALGOL!) and there­
fore may cause trouble if both are used in the same ALGOL program. 
In order to avoid trouble of this sort, it is strongly recommended to 
restrict the length of identifiers whenever possible to at most six char­
acters. 

9.3. Scope of a quantity 

With the exception of labels and the reserved identifiers, every quan­
tity used in an ALGOL program must be declared. Such a declaration, 
besides announcing the quantity and the name used for it, defines also 
other properties (for this see Chapter VI) and especially the scope of a 
quantity. The latter is defined as that part of an ALGOL program in 
which the quantity exists and can be called through its identifier. Out­
side the scope the quantity is either nonexistent or temporarily in­
accessible. 

§ 10. Numerical Constants 

Values appear in ALGOL programs usually as values of variables; 
these values can be changed in the course of a calculation. However, 
where a value is known a priori and is the same in all applications of 
the program, it can be given directly as a numerical or logical constant. 

The syntactic objects denoting numerical constants are the unsigned 
numbers, with the important subclasses unsigned integers, decimal 
numbers, exponent parts. The logical constants are represented by the 
basic symbols «true» and «false ». 

1 Lists of these reserved names are given in 15.2.1 for the standard functions 
and in 49.1 for the standard I/O-procedures. 
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10.1. Examples of unsigned numbers 

Unsigned integers: «0», (<175», «1», «3014», «000». 
Decimal numbers: (<.197», «510.0», «0000.0070», «11.754». 
Exponent parts: «1085», «10- 7», «100 », «104711». 
General case: (d7510-7», «000710003 », (d.1 l011 », «00.0010 +00», 

« 1.2345671089». 
(Some of these examples are inflated by insignificant zeroes, but this is 
allowed.) 

10.2. Syntax 

10.2.1. The unsigned integers have the syntactic form 

«ZZ ... Z», 

where every Z represents an arbitrary decimal digit. 

10.2.2. With this, the unsigned numbers have one of the following syn­
tactic forms (the G's denote arbitrary unsigned integers): 
Decimal numbers: «G», «.G», «G.G»I. 
Exponent parts: «lOG», «10+ G», «lO-G». 
General case: a decimal number followed by an exponent part 2. 

10.2.3. Syntactic diagram (see Fig. 3). 

10.3. Semantics 

An unsigned number is a syntactic object which always represents 
the same numerical value. Decimal numbers have the conventional 
meaning, whereas the exponent part is a scaling factor expressed as a 
power of ten. 

ALGOL imposes restrictions neither upon the length of numerical 
constants nor upon the size of the numbers represented by them, but 
of course the computer limitations mentioned in 8.2 apply. 

10.4. Types 

Unsigned integers represent values of type integer, while all other 
numerical constants are of type real. As a consequence, «~02» and 
«200.000» are of type real, while «200» is of type integer but re­
presents the same value. The logical constants «true» and «false» are 
of type Boolean. 

1 The comma, which in some European countries is used as the standard 
separator between integer and fractional part of a number, cannot be used for 
that purpose in ALGOL. On the other hand, it is also forbidden to insert commas 
as digit group separators in long numbers, e.g. 1,234,567.89. 

2 Besides this, the RAR mentions - without making further use of it - a 
syntactic entity called number. 
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decimol digit ref. z J) f--<o--.L ___ --l unsigned In leger 

~-O>----O.-~~E--------....,3;-----__t1 oplional sign 

decimal 
number 

Fig. 3 

10.5. Negative constants 

exponenf 
pari 
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Unsigned numbers always represent non-negative values. Where 
negative numerical constants are required, a symbol « - )} may be placed 
in front of an unsigned number; it should be recognized, however, that 
such combinations, e.g. «-106)}, ((+1.2345671089)}, are no longer un­
signed numbers, but arithmetic expressions, for which different rules apply 
(d. §16). On the other hand, a sign following the symbol «10)} is a con­
stituent of the exponent part and not an arithmetic operator. 

§ 11. Labels 

Labels are used in ALGOL programs for identifying the destinations 
of jumps, e.g. we can write «goto arica)} and place a corresponding 
label and colon «arica :)} in front of the statement to which the jump 
should be directed. Sometimes labels are also used to mark statements 
just for explanatory purposes. 
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11.1. Syntax 

A label is an arbitrary identifier! and therefore a sequence of letters 
and/or digits, but always beginning with a letter. Accordingly the follow­
ing are examples of labels: 

«arica)}, «x7)}, «a)}, «dixi)}, «pt77tp)}. 

11.2. Source- and destination labels 

Depending on the synactic position in which it appears in an ALGOL 
program, a label is either 

a destination label, i.e. a label in front of a statement, e.g. 

«arica: x:= 1 )}, or 

a source label, if it occurs in a goto-statement, e.g. «90fo x7)}, in a 
switch list, or as actual parameter. 

In the following, the word label will usually refer to the label as an 
entity without regard to its syntactic position, whereas the attributives 
source and destination indicate a specific syntactic position of the label 
in question. 

11.3. Semantics 

A destination label is itself a quantity; it marks a spot in an ALGOL 
program. A source label on the other hand is not itself a quantity but 
only referring to the corresponding destination label. 

As a rule, a source label can refer to a destination label only if the 
two match exactly symbol for symbol (they are then called corresponding). 
However, the restriction of length (d. 9.2.4) holds also for labels, and 
thus a jump «90fo identical)} can well have the labelled statement 
«identity: z:= x+sin(y)} as its destination. 

11.4. Scopes oflabels 

Since destination labels are quantities, the rules of scope must be 
observed. As an example, the same identifier may not be used more 
than once as destination label at the same block level; it may, however, 
occur several times as source label. For further details see § 42. 

§ 12. Strings 

In order that arbitrary sequences of basic symbols can be handled 
by an ALGOL program (mainly for controlling I/O-operations), strings 

1 According to the SR, item 3.5.1, unsigned integers are not admitted as labels 
in SUBSET ALGOL 60. 
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have been introduced. However, strings can appear in ALGOL programs 
only as actual parameters of procedure statements or function desig­
nators (d. §15, § 26). 

12.1. Examples 

({ , .. this u is u au' string" " , 
({'UUUUU')}, 

({' u //57 ..... - ([[) u 'else' u a : = b u u ')}, 
({' U U S U ddd.dddlO + dd u u ' )}. 

12.2. Syntax 

A string has the syntactic form 

({' , » or ({' QQ ... Q')}, 

where ({')} and ({')} are the string quotes and every Q denotes either 
itself a string or any basic symbol except the string quotes. 

Syntactic diagram: 

any basic symbol 
except string quoles 

Fig. 4 

Note. Except for the rules given above, the symbols contained in 
a string are completely arbitrary; indeed, all other syntactic rules do 
not apply inside strings. 

12.3. Semantics 

Strings serve as actual parameters of procedure statements or func­
tion designators! to whose execution they contribute certain nonarith­
metic information, e.g. formats for printing. Otherwise the basic symbols 
contained in strings have no bearing on the execution of an ALGOL 

program. 
Within strings spaces may have a meaning. In order to discriminate 

between relevant and irrelevant spaces, the former are denoted by the 
symbol ({ u )}. This symbol, however, cannot be used outside strings. 

1 For the precise conditions under which a string may appear as actual parameter 
of a procedure call see 45.3.1. 
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§ 13. Comments 

In order that explanations may be given between statements and 
declarations of an ALGOL program, the following rule has been adopted: 

13.1. The comment convention 

After any symbol «;)} or «begin)} occurring in an ALGOL program, 
arbitrary text may be inserted, provided the latter is enclosed between 
the separators {<commenh and (<; )}. Indeed, the symbols following the 
symbol «comment)} up to and including the next following semicolon 
are considered as nonexistent. 

Likewise the symbols following «end)} up to, but excluding, the next 
following «;)}, «end)} or «else)} (whichever comes first) are considered 
as nonexistent. 

It should be recognized, however, that «comment)} may never be 
placed after a symbol other than «;)} or «begin)}. 

13.2. Examples 

(< begin comment: the variable zeta is no longer used;)}, 
(<; com ment time is 2 X money. stop forever;)}, 
(< end of loop ;)}, 
(< end of type 27 c-branching end)}, 
(<end of while-condition 11+ 1+ II -- else)}. 

According to the above conventions, these 5 pieces of program are 
equivalent to the constructions 

«begin)}, «;)}, (<end ;)}, (<end end)}, (<end else)} 

respectively. 

13.3. Conflicting situations 

If the ALGOL report is taken literally, the construction 

(<end begin comment ian; klaus;)} 1 

gives rise to an ambiguity. Indeed, depending on whether we consider 
first the comment situation induced by «comment)} or by «end)}, the 
above example will be equivalent to 

(< end ;)} or to (< end ; klaus ;)}. 

However, if we accept that ALGOL programs are always read strictly 
from left to right, then the «end)} is considered first, hence «begin)} 

1 See DI]KSTRA, E. W.: ALGOL-Bulletin [2] Nr. 12, item 12.1. 
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and «comment» are nonexistent and therefore this example must be 
interpreted as «end; klaus; ». Similarly, other examples such as 

«comment look at 'u; x:= 1 u' prime:= 0 ; », 

«prtext (' com ment u nonsense ') ;», 
«comment begin comment a ; b ;» 

obtain an unambiguous meaning by reading strictly from left to right. 
All the same it seems advisable not to make use of conventions which 
are not explicitly stated in the RAR. It is therefore recommended that 
the symbols « com ment», « end», «' », and «' » not be used in a comment 
situation, i.e. in one of the situations described above. 

3 Rutishauser, Description of ALGOL 60 



Chapter III 

Expressions 

An expression describes the computation of a new value from other, 
already given values, in an obvious notation. The given values appear 
in the expression 

a) directly as numerical or logical constants; 
b) as values of variables; 
c) as values of function designators. 

Expressions fall into two classes: 

Arithmetic expressions compute values of real or integer type; they 
are the backbone of all numerical computations. 

Boolean expressions compute values of type Boolean. Basically their 
purpose is to facilitate logical calculations (Boolean algebra), but they 
are also used frequently in numerical calculations when decisions con­
cerning the further course of the calculation must be made. 

Wherever an expression is encountered during execution of an ALGOL 
program, it is evaluated according to the rules given in this chapter and 
produces a single value (of either real or integer or Boolean type). How 
this value is further used is not defined by the expression but by the 
context, i.e. the statement or declaration into which the expression is 
embedded. 

Though the rules adopted in ALGOL for evaluation of an expression 
are mainly in accordance with long established conventions, they will 
be defined here again from the bottom up. These definitions are neces­
sarily recursive because the rules for subscripted variables and function 
designators already use the concept of an expression. Furthermore, func­
tion designators cannot be fully defined before procedures have been 
introduced, but those in turn use all other elements of the language. 

§ 14. Variables 

Variables serve as carriers of values. Indeed, a computed value can 
be attached to a variable and then remains associated with it. This value 
can be used later in the calculation simply by inserting the variable 
wherever the value is required. 

We distinguish simple variables, which are naked identifiers, and sub­
scripted variables, which are identifiers appended by subscripts; the latter, 
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however, are not written below the line as usual but are enclosed in 
brackets. 

Every variable has a certain type (real, integer, Boolean) which 
defines the type of value that can be attached to it. 

14.1. Examples 

14.1.1. (<omikro», « delta», (<t» , « xl» , « c87 8z» are simple variables. 

14.1.2. «r[k] I), «r[k +1] I), «r[5] I), «r[m xn-kt2] »are subscripted vari­
ables representing the k-th, k + 1-th, fifth and (mn - k2)-th component 
of the array r. 

14·1.3. «q[ii,r[k], -3]», «rax[rax[rax[1]]]», «i[i[m,n]]» are sub­
scripted variables with nested subscripts. If e.g. in the first of the 
examples above we have /i=8, k=2, r[2]=5, then it represents the 
(8, 5, - 3)-component of the three-dimensional array q. Furthermore, 
if the components of the array rax have the values rax [i] = 2/, then 
the second example represents the value 8. 

14.2. Syntax 

14.2.1. Simple variables have the syntactic form «i», i.e. they are just 
identifiers. 

14.2.2. Subscripted variables have the syntactic form 

(<l[E, E, ... , E]», 

where I represents an arbitrary identifier (more precisely, I represents 
the name of the array of which the subscripted variable is a component), 
and the E's are subscript expressions, i.e. ordinary arithmetic expres­
sions l , but with a special rule of evaluation (for which see § 20). 

14.2-3. Both kinds of variables are described by the following syntactic 
diagram: 

0-----1 variableideniili"er(dJ8.2) H simple Y{7r/{7b/e I 

array idelllitier 
(cf. 39.2) 

Fig. 5 

subscripted variable 

1 Note that according to § 16, E can also mean a simple variable or numerical 
constant because these are special cases of arithmetic expressions. 

3" 
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14.2.4. Both simple and subscripted variables can appear in ALGOL 
programs in essentially the same syntactic positions, except that a sub­
scripted variable can appear neither as actual parameter, if the cor­
responding formal parameter is called by name (SR, item 4.7-3.2), nor 
as controlled variable in a for-statement (SR, item 4.6.1). 

14.3. Semantics 

14.3.1. A simple variable, if encountered during execution of an expres­
sion 1, represents a single value, namely the value that has most recently 
been assigned to the variable. This value is time-dependent insofar as 
it is changed by every new assignment to the variable; between con­
secutive assignments, however, the value of a variable remains constant. 

14.3.2. A subscripted variable <d[EI' E 2 , ••• , Ep]», if encountered in an 
expression 1, represents also a single value defined as follows: Evaluate 
the subscript expressions EI , E 2 , ••• , Ep; if their values are iI' i 2 , ••• , i p, 
then the subscripted variable represents the value that has most recently 
been assigned to the iI' i2 , ••• , ip-component of the array I. 

14.3.3. Restrictions. The use of variables is subject to certain restrictions 
which have to do with the fact that simple variables and arrays must 
be declared and have scopes (d. 42.2). In fact a simple variable is 
nonexistent and unusable outside its scope. Furthermore, a SUbscripted 
variable is nonexistent not only outside the scope of the corresponding 
array, but also if anyone of the subscript expressions produces a value 
outside the bounds prescribed by the corresponding array declaration 
for that subscript position. Finally, the value of a simple or subscripted 
variable is undefined before the first assignment to it has occurred. 

14.4. Types 
Every variable is of a certain type (real, integer, Boolean), which 

simply means that the variable can only represent values of that type. 
However, in contrast to FORTRAN, types of variables are not distin­
guished syntactically but are defined by corresponding declarations. 
More precisely, the type of a simple variable is defined by a type declara­
tion (d. § 38), while for subscripted variables the type is defined for the 
whole array (hence is common to all its components) by an array de­
claration (d. § 39). 

§ 15. Function Designators 

A function designator is a syntactic object which initiates evaluation 
of a certain function. The resulting function value is then used in the 

1 For the meaning of a simple or subscripted variable appearing on the left 
side of an assignment statement see § 21; for their use as actual parameters of 
procedure calls d. § 45. 46. 
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evaluation of the expression in which the function designator occurred. 
Two classes of functions are used in ALGOL: 

a) The 10 standard functions 
sin, cos, exp, In, sqrt, arctan, abs, sign, entier, length, 

which are permanent constituents of the language and have a fixed 
meaning. These 10 functions can be used in ALGOL programs without 
being declared and their identifiers are reserved names which should not 
be used otherwise. 

b) Function procedures. Besides the standard functions, the user may 
introduce any functions he finds useful. However, these must be declared 
by corresponding function procedure declarations (d. § 46). 

15.1. Examples 

a) For the standard functions: 

«arctan (1) », «sin (1.45 +z) », (<In(1 +x) », 
«length (' .. this u is u au' string") ». 

b ) For function procedures: 

«pi», «radius» (these are without argument), 
«bessel (n, x) », «sinhyp (10-3 X theta + exp (x)) », 
«decide (15, true, roda) », (<decide (n, a = entier (b), w) », 

« bessel (nt2, sqrt (v [entier (x) J)) » 

(The reader may find declarations for some of these functions in § 46). 

15.2. Syntax 

The syntactic object which causes evaluation of a function is the 
function designator. It can be used as a primary in an arithmetic or 
Boolean expression (d. § 16, § is) and therefore is itself a complete 
arithmetic or Boolean expression and may appear wherever the syntax 
allows for an expression. 

A function designator has one of the following syntactic forms: 

15.2.1. For the standard functions: 

(<l(Q)), 

where I denotes a standard function identifier, i.e. one of the 10 names 

«sin», «cos», «exp», «In», «sqrt» , 
« arctan », « abs », « sign», « entien> , (<length», 

and Q represents either an arbitrary arithmetic expression (for the func­
tions sin through entier), or a string or a string identifier (for the func­
tion length). 
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15.2.2. For the function procedures (compare also 41.2): 

«1 », if the corresponding procedure declaration has the 
syntactic form «T procedure 1 ; S», 

(<l(A1 ,A2 , ... ,Ap)), if the procedure declaration has the syntactic form 
«T procedurel(~,~, ... ,Fp) ; VCS». 

Hereby T represents one of the declarators «real», «integer», «Boo­
lean», while 1 denotes the procedure identifier (the name of the function) 
and the A's are the actual parameters, which may be either expressions 
or identifiers or strings (see § 45, 46 for further conditions which actual 
parameters must meet). 

15.2.3. Structurized forms. It is permitted to replace any of the commas 
separating the actual parameters of a function designator with a syn­
tactic construction «)XX ... X:(» (parameter delimiter), in which the 
X's denote arbitrary letters. 

15.2.4. Syntactic diagram: 

proeedvre 
identifier 
(cf.IfU) 

string 
idenfifler 

rer.lff.g) 

(lcfva/ p(llY7meter 
(ef. g5.g; with 
resfrictions 
st(lled in § 1f5) 

par!Jmeter 
del/mifer 
ref. 28.2) 

Fig. 6 

expre.rslon 
(dlD.5.) 
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15.3. Semantics 

A function designator F, if encountered during evaluation of an ex­
pression E, represents a single value which is obtained by evaluating F 
intercalatively in the evaluation of E as follows: 

15.3.1. For a function designator pertaining to one of the standard 
functions sin through entier, the arithmetic expression appearing as its 
argument is evaluated, and with that value x the function is evaluated 
as indicated by the following table: 

Function Value of function designator [(x) Type of 
function value 

sin (x) conventional value, x taken in radians real 
cos (x) idem real 
exp(x) eX real 
In (x) natural logarithm, undefined if x ;£; 0 real 
sqrt(x) positive branch of rx, undefined if x < 0 real 
arctan (x) conventional value y, - n/2 < y < n/2 real 
abs(x) Ixl real 
sign (x) + 1 if x> 0, -1 if x<O, oifx=O integer 
entier(x) integer value k such that k;£; x < k + 1 integer 

15.3.2. The value of (<length (5)) (where 5 represents a string) is the 
number of basic symbols contained between the outermost string quotes 
of the string 5, and is of type integer. 

15.3.3. For the evaluation of function designators corresponding to de­
clared function procedures see § 46. 

15.4. Types 

Every function is of a certain type, which means that corresponding 
function designators can produce only values of that type. The types 
of the standard functions are defined in 15.3.1 and 15.3.2 above: The 
functions sign, entier and length are of type integer, while all other 
standard functions are of type real. The type of a function procedure 
is defined by the type declarator in front of the corresponding function 
procedure declaration (d. 41.2.2). 

§ 16. Simple Arithmetic Expressions 

Arithmetic expressions serve to describe computations in the domain 
of real or integer values. They are written in conventional mathematical 
notation, except that for exponentiation an operation symbol «t» is 



40 III. Expressions 

used instead of raising the exponent, and that the multiplication symbol 
« X » may not be omitted. 

Arithmetic expressions may be simple or conditional. The latter are 
treated in § 19, while here we deal only with simple arithmetic expres­
sions. 

«a» 
«sin (1.45 + z»> 
«r[kJ » 

« 1.23456710 - 89» 
«9t9» 
«a+b» 

16.1. Examples 

(<1 jsqrt (y[1Jt2+ Y[2Jt2+ Y[3JP)t3» 
«2.13710-5 xb+cj(a+ 7 X b) - deltat2j4.1 +a xbjvp» 
«(a+b) xc-dj(ejf+g) xhtk-ljm» 
«0.25 xsqrt((a+b+c) x(-a+b+c) x(a-b+c) x(a+b-c))» 

Note. According to the syntax, also unsigned numbers, variables and 
function designators are themselves simple arithmetic expressions, and 
therefore all examples given in 10.1,14.1,15.1 are special cases of simple 
arithmetic expressions. 

16.2. Syntax 
16.2.1. A simple arithmetic expression has the syntactic form 

«5 POP 0 P ... POP», 

where the P's are the primaries of the expression (these may be either 
unsigned numbers, simple or subscripted variables, function designators, 
or arithmetic expressions in parentheses) and the O's denote arithmetic 
operators (d. 7.1, d). 5 represents one of the symbols «+», «-» or 
blank space. 

16.2.2. Terms and factors. If all additive operators (those for addition 
and subtraction) which are not enclosed in parentheses or brackets are 
removed from an arithmetic expression, the latter falls into pieces which 
we call the terms of the expression. Likewise, a term falls into pieces 
called factors if all multiplicative operators (those for multiplication and 
division), as far as they are not inside brackets or parentheses, are re­
moved from it. 

As an example, the terms of the eighth example in 16.1 are 

«2.13710- 5 X b», «cj(a+ 7 X b) », «deltapj4.1 », «a X bjvp», 

while «a», «b», «vt2» are the factors of the last term. 
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16.2.3. Syntactic diagram: 

unsigned number (cf. 70.2) 

simple variable (cf. 7'1.2) 

subscripted variable (cf.I'I-.2) primary I 

funclion designatof' (cf. 75.2) 

L-(I)---i orilhmelic e)(pression (ef. 79.6) J---0-

op/i onal sign L-T--~pr~im~a.~"'YU--I--I-1 simple arilhmelic 
'--'-( c_f._. 7_0_. 2~)_-,1 expression 

art/hme/ic 
opera/or 
(cf. 7. I) 

Fig. 7 

16.3. Semantics 

16.3.1. An arithmetic expression, whenever it is encountered during the 
execution of an ALGOL program, produces a value according to the 
following rules: 

a) The primaries of the expression are evaluated independently and 
their values are used for further evaluation. 

b) Outside the primaries the following rules of precedence apply: 
First t 
Second X and / 
Third + and -

c) Except for b), precedence of arithmetic operators goes from left 
to right. 

d) Expressions occurring within the primaries are evaluated accord­
ing to the same rules. 

The precise content of these rules may also be expressed by the 

16.3.2. Equivalence rule for arithmetic expressions: Let 

«Po 0 1 1l O2 P2 ... Pn- 1 On p"»1 

be a simple arithmetic expression in which the P's represent the primaries 
and the O's are the arithmetic operators connecting them. If Ok is an 

1 It is assumed that the optional sign in front of this expression is blank space, 
otherwise we would place another primary 0 (zero) in front of the expression and 
thus establish the required syntactic form without changing the meaning. 
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operator which in the sense of 16.3.1, b has precedence over 0k-1 (or if 
k = 1), and 01<+1 does not have precedence over Ok (or if k= n), then the 
above expression is defined to be equivalent to 

(<Po 01 ... 0k-1 (11-1 Ok 11) 01<+1 ... On Pn )}· 

Iterated application of this rule permits parenthesizing an arithmetic 
expression to such an extent that the order in which the operations 
should be carried out becomes obvious. In this way the eighth example 
of 16.1 is transformed into 

« ((((2.13710- 5 X b) + (c/(a+ (7 X b)))) - ((deltat2)/4.1)) + ((a X b)/(vt2))) )}, 

which simply means that the original expression could be evaluated in 
the following order: 

«2.13710-5 xb+c/(a+ 7 xb) - deltat2/4.1 +a xb /vt2)} 

I I I I I I I I I I I I 
1 5 4 3 2 8 6 7 12 91110 

Where function designators and/or subscripted variables are involved 
in an arithmetic expression, evaluation of the former and selection of 
the correct array component for the latter is also considered as an 
operation which must be ranged among the other operators, e.g.: 

« - 7.394t07tiso [k+ 2 X jJ X bessel (nt2, sqrt (xt2+ yt2))/rax [rax [1]] )}. 

I I I I I I I I I I I I I I I 
15 43 2 1 14 10 5 9 6 8 7 1312 11 

It should be recognized, however, that what these examples show is 
not the only possible order of evaluation. Indeed, the compiler maker 
has, within the bounds prescribed by the equivalence rules, considerable 
freedom for organizing the evaluation of arithmetic expressions. 

16.3.3. Execution of single arithmetic operations, types 
Let a and b denote two single arithmetic values (of type real or 

integer). Then the operations 

«a+b)}, «a-b)} and «axb)} 

are defined according to convention. The resulting value is of type 
integer if and only if both operands are of type integer, otherwise 
of type real. 

The operation «a/b)} is the ordinary division of real numbers. The 
resulting value is of type real irrespective of the types of a and b, 
and therefore one can never rely upon the precision of the quotient of 
two integers, even if the result is (theoretically) again integer-valued. 
Besides, the quotient is undefined if b= o. 
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The operation «atb)} denotes exponentiation, a being the base and 
b the exponent. The result c of this operation is defined by the follow­
ing table: 

b of type 
real 
> = <0 

a of type >0 C E C 
real =0 a U U 

<0 U U U 

a of type >0 C E C 
integer =0 a U U 

<0 U U U 

b of type 
integer 
> = <0 

C E C 
a U U 
C E C 

X X U 
X U U 
X X U 

Legend: 

C: Conventional value of ab of 
type real. 

E: 1.0 of type real. 
a: 0.0 of type real. 
U: Undefined. 
X: Undefined, except if b is an un­

signed integer; then atb has 
the conventional value and is 
of type integer. 

16.3.4. Undefined situations. Besides the cases mentioned already, the 
value of a simple arithmetic expression is undefined if anyone of its 
primaries has an undefined value or a value of type Boolean. 

16.4. Type of the value of a simple arithmetic expression 

According to the rules given above, the value of a simple arithmetic 
expression is (if defined at all) of type integer if and only if the values 
of all primaries are of type integer and if neither divisions nor ex­
ponentiations (other than with unsigned integers as exponents) occur. 
In all other cases the value is of type real. 

16.5. Confrontation of examples with conventional notation 

Conventional notation ALGOL notation 

a [p [q]] 

a [i, k] 

at(btc) 

at(n+ 1) 

(- b+sqrt (bt2-4 xa xc)) /(2 Xa) 

exp (- x/(4 Xt))/(2 xsqrt (t)) 

1/sqrt (1- sin (alpha/2)t2 X sin (psi)t2) 

§ 17. Relations 

A relation is a predicate which produces a logical value as the result 
of comparing two arithmetic values. It can appear in a logical expression, 
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and the logical value produced by it is used in the evaluation of this 
expression (see § 18 below). 

17.1. Examples 

{This produces the value true if x is zero, otherwise 
it yields the value false. 

{Test whether the point a, b lies inside the unit 
circle; if so, it produces the value true. 

«i =l=n + 1) 
«sin (a/f) ~ v [entier (bessel (n, x) Xi O)J ) 

{The result of this relation is 
«n = 2 X entier (0.25 + n/2) ) 

if n is even, false if n is odd. 
« -1> xlcrit). 

17.2. Syntax 

true 

A relation consists of two simple arithmetic expressions separated by 
one of the 6 relational operators (d. 7.1): 

simple ari!IJmelic rela/loflal simple arillJmenc 
expressiofl '--------- opera/or - e xpressiofl f---jrelallofl I 
(cf.16.2) (ef7.1) (ef. 16.2) 

Fig. 8 

The simple arithmetic expressions appearing on either side of a relational 
operator are sometimes called the comparands of the relation. 

17.3. Semantics 

17.3.1. A relation describes a condition between two arithmetic expres­
sions. Wherever encountered during execution of a program, it represents 
a logical value, namely 

the value true, if the condition is fulfilled, 
the value false, if the condition is not fulfilled. 

To obtain this value, the comparands of the relation are evaluated 
indepedently and only then are their values compared. 

17.3.2. Influence of roundoff errors. If a, b are variables of type real, 
then roundoff errors may completely reverse the value of a relation 
such as «a= b), which is true if and only if the current values of a 
and b coincide exactly. Analogous effects occur with the other five rela­
tional operators. 

All the same, such a relation «a= b) may be useful, e.g. for skipping 
parts of a computation in which exact coincidence of the numerical 
values of a and b would be disastrous. However, it should not be over­
looked that it may make a difference which of the relations «a= b) or 
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«a - b = 0» is used for this purpose, since due to roundoff errors no one 
can guarantee that these two relations will produce the same logical 
value. 

The influence of roundoff errors may become a severe problem where 
termination of iterative computing processes is done by tolerance criteria, 
because these must be expressed in ALGOL by relations. It is not further 
tragic if the roundoff errors involved in the evaluation of such a relation 
have the effect that the termination is only delayed by a few iteration 
steps, but it might happen that a termination criterion such as «abs (x) 
< eps» is never fulfilled, even though x should theoretically converge 
to zero. 

17.3.3. It has occasionally been disputed what the meaning of a relation 
like «a=b» should be, if a is of type real, b of type integer (see H. C. 
THACHER, ALGOL Bulletin Nr. 18, item 18.3.1). There is no problem, 
however, since evaluation of a relation is essentially a comparison be­
tween values, thus the above relation produces the value true if and 
only if the current value of a equals the current value of b. 

§ 18. Simple Boolean Expressions 
Boolean expressions serve to describe calculations with logical values. 

They may be simple or conditional. Conditional Boolean expressions are 
treated later in § 19, while here we deal only with simple Boolean ex­
pressions. 

«cAd» 
«a = 1 Vb> -1» 
« --.p» 
«true » 

«x=2» 
«(a= --'P)) 
«// [nt2J » 

18.1. Examples 
(c and d) 
(a=1 or b>-1) 
(not P) 

) 
These four 
are also 
Boolean 
primaries 

I These five are 
at the same 
time also 
Boolean 
secondaries 

«g-== --.aA bA (c:::;) p= qt2Aq> P+k) V --.ddcx(u, aVb)) 
«--.a+b= cV d [k+ 7J A (P V q:::;) decide (n+ 1, x= 0, roda)))) 

Note. According to the syntax, logical constants, simple or sub­
scripted variables of type Boolean, relations and Boolean type function 
designators are already complete Boolean expressions. 

18.2. Syntax 

A Boolean primary is either a logical constant, a (Boolean type) simple 
or subscripted variable, a relation, a (Boolean type) function designator, 
or a Boolean expression in parentheses. A Boolean secondary is either 
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just a Boolean primary or a Boolean primary preceded by the operator 
« --.» (negation). Finally, a simple Boolean expression is a sequence of 
Boolean secondaries separated from each other by binary Boolean opera­
tors (V, A, ::::), -): 

r-----{ 1\ r-----, 

f----o---i=>f-----I----1 

l..--_---{ _ r-----' 

log/Col cOfls/cml (ef. 7. I) 

simple vol'iabl e (cf. N. 2) 

subscripted I/orloble (cf. lif.. 2) 

0-- --1 8oq/e(!n I prtmary 
relol/on (cf. 77.2) 

funcl/on des/gna/or (cf. 75.2) 

~ Boolean express/on (cf.19.6) ) 

o • LB=J · I Boolean primary I Boo/eon secondory I 

B oo/ean secondary simple Boolean expres.sion 

binary Boolean opera/or 

Fig. 9 

18.3. Semantics 

18.3.1. A simple Boolean expression, when encountered during the exe­
cution of an ALGOL program, computes a logical value according to the 
following rules: 
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a) The Boolean primaries of the expression are evaluated independ­
ently and their values are used for further evaluation. Arithmetic and 
Boolean expressions occurring as constituents of the Boolean primaries 
again are evaluated in accordance with the corresponding rules. 

b) Outside the Boolean primaries the following precedence rules apply: 

First: -, (negation) 
Second: /\ (conjunction) 
Third: Y (disjunction) 
Fourth: ::::> (implication) 
Fifth: - (equivalence). 

c) Except for b), precedence of Boolean operators goes from left to 
right. 

The precise content of these rules may be expressed by the following 

18.3.2. Equivalence rule for Boolean expressions: Let 

be a simple Boolean expression, where the O's denote binary Boolean 
operators and the S's are Boolean secondaries. In this expression ad­
ditional parentheses can be placed as follows without changing the 
meaning: 

First: All Boolean primaries which are relations are enclosed by 
parentheses, and all Boolean secondaries which have the form « -, p», 
are replaced by « ( -, P) ». 

Second: If Ok is an operator which in the sense of 18.3.1, b has pre­
cedence over 0k-1 (or if k = 1), and 0k+1 does not have precedence over 
Ok (or if k= n), then the above expression is defined to be equivalent to 

«So 0 1 ... 0k-1 (Sk-1 Ok Sk) Ok+! ... On Sn»' 

Iterated application of these rules permits parenthesizing a Boolean 
expression to such an extent that the order in which the operation 
should be carried out becomes obvious. Treating the last of the examples 
18.1 in this way yields 

« (( -, (a+ b= c)) Y (d [k+7] /\ ((P Y q) ::::> decide (n+1, (x= 0), roda)))))), 

I I I I I I 
5 6 4 1 3 2 

which gives a possible order of evaluation by the enumeration below the 
expression. Likewise 

«ayb/\ -,cyd/\ey -,f/\gYh/\ -,i» 
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is transformed into 

« (( ((a V (b 1\ ( -, c))) V (d 1\ e)) V (( -, f) 1\ g)) V (h 1\ ( -, i))) ». 

I I I I I I I I I I I 
3 2 1 5 4 8 6 7 11 10 9 

18.3.3. Execution of single logical operations. The outcome of the opera­
tions -, a, a Vb, a 1\ b, a:::> b, a = b, where a and b represent values of 
type Boolean, is defined by the following table: 

Value of a true false true false 
Value of b true true false false 

-,a false true 
al\b true false false false 
aVb true true true false 
a:::>b true true false true 
a=b true false false true 

18.3.4. Types. Of course Boolean operations are defined only if the 
operands are of type Boolean. However, variables and function desig­
nators of type real or integer, as well as numerical constants may still 
occur in Boolean expressions, namely as subscripts, as actual parameters 
of function designators and in relations. 

§ 19. Conditional Expressions 

A conditional (arithmetic, Boolean) expression may be thought of 
as a device for choosing one of a given set of simple (arithmetic, Boolean) 
expressions. This choice is made at evaluation time depending on certain 
logical values. 

19.1. Examples 

19.1.1. Conditional arithmetic expressions. 

(<if x> 0 then 1 else if x< 0 then -1 else 0». 

Here a choice is made between the three expressions « 1», « - 1», « 0», 
the first being evaluated for positive, the second for negative, the third 
for vanishing x. The whole expression is therefore equivalent to the 
standard function designator «sign (x»>. 

«if abs(x)~ 0.25 then 4 xx else if x> 0 then 2 - 4 xx else - 2 - 4 xx». 
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This example chooses between three linear functions in such a way that 
on the whole the following function is represented: 

Fig. 10 

Thus conditional expressions are, among other things, an excellent 
instrument for expressing discontinuous functions, but also for interval­
wise approximation of analytic functions, e.g. 

(<if t ~ 0 then cos (sqrt (t)) 
else 

ift< -0.1 then (exp (sqrt(-t)) +exp (-sqrt(-t)))/2 
else 

1-t x (1- t x (1- t X (1- t/56)/30)/12)/2). 

(This computes for any real t the value of the entire function cos (VI) 
with an accuracy adequate for a computer with a ten decimal digit 
mantissa). 

19.1.2. Conditional Boolean expressions. 

(<if x= 0 then Z= 0 else x> 0). 

If x= 0, the Boolean expression «Z= 0) is picked up and evaluated, but 
if x =FO, then the logical value of «x> 0) is taken as the value of the 
whole expression. On the whole the meaning of this expression is de­
scribed by the following truth-table: 

z=O 
z=l=O 

4 Rutishauser, Description of ALGOL 60 

%=0 

true 
false 

%>0 

true 
true 

false 
false 
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19.2. Syntax of conditional arithmetic expressions 

19.2.1. The conditional arithmetic expression has the syntactic form 

«if BI then EI else if B2 then E2 else . .. 

... else if Bn- I then En- I else En», 
(1 ) 

where the B's represent arbitrary Boolean expressions I, and the E's 
represent simple arithmetic expressions. 

19.2.2. In the RAR, § 3.3.1, the conditional arithmetic expression was 
defined as 

« if BI then EI else CI », (2) 

with CI representing an arbitrary arithmetic expression, while BI , EI 

have the same meaning as in (1). Since CI may again be conditional, 
(2) is simply a recursive modification of (1), with CI standing in place 
of «if B2 then E2 else if ... else En»' 

19.2.3. The syntactic construction (<if B then» is called an if-clause, 
while the E's are the alternatives of the conditional expression. 

19.2.4. Syntactic diagram: 

~ Boolean expression(Cf.1.9.6~ir-Clavse I 

simple arilhmelio 
expl'ession 
(ef. 16.t) 

simple arilhmetic expl'ession 

Fig. 11 

19.3. Semantics 

condilional 
arilhmetic 
expl'ession 

19.3.1. The value of a conditional arithmetic expression written in the 
form (2) above is defined as follows: 

a) Evaluate the Boolean expression BI . 

b) If BI has the value true, the desired value of (2) is the result 
of evaluation of the expression EI . 

c) If BI has the value false, then the value of the expression (2) is 
defined to be the value of the expression CI . 

1 In principle, arbitrary Boolean expressions, hence also conditional ones (cf. 
19.4), are allowed here, but for reasons of readability it is recommended to use 
only simple Boolean expressions in if-clauses. This is easily achieved, namely by 
enclosing conditional Boolean expressions in parentheses. 
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19.3.2. In view of the fact that C1 may again be conditional, the evalua­
tion of a conditional expression is described in terms of the more ex­
tensive form (1) as follows: 

d) Evaluate, in the order from left to right, the Boolean expressions 
Bl , B2, ... , etc., until one is found, Bk say, which has the value true. 
Then the value of (1) is defined as the value of Ek • However, if none of 
the B's has the value true, then the value of the last alternative En is 
taken as the value of (1). 

Note. After the first Boolean expression Bk having the value true 
has been found, no further B's are evaluated, i.e. the selection of the 
alternative Ek is independent of the fact that some of the later Boolean 
expressions Bk+l' ... , Bn - l might also have the value true. 

19.4. Conditional Boolean expressions 

19.4.1. Syntax and Semantics of these are defined entirely analogously 
to those of the conditional arithmetic expressions, only that now the 
alternatives are simple Boolean expressions: 

e.rpression 
ref. !8.2) 

Fig. 12 

simple Boolean e.rpl'(lssion 
(cf. 78.2) 

condit/aMI 
Boolean 
expr(lssion 

19.4.2. Conditional Boolean expressions can often be transformed into 
equivalent simple Boolean expressions. Indeed, the construction 

«if Bl then Bn else if B2 then B22 else if Bs then B33 else B,,» 

(where all B's represent simple Boolean expressions) is equivalent to 

«(Bl) A (Bll) V (-,B1) A (B2) A (B22) V 
( -, B1) A ( -, B2) A (Ba) A (B3s) V ( -, B1) A ( -, B2) A ( -, Bs) A (B,,) », 

provided all B's have well-defined values. 

However, if some of the B's are undefined, this equivalence does not 
hold. As an example, if v is an array with defined components v [1], v [2], 
... , v [n], and kappa is a Boolean variable, then 

«if k = 0 then true else kappa A v [k] =1= 0» 

is well-defined for all k= 0, 1, 2, ... , n, whereas this is not so for 

« (k= 0) A (true) V (-,k= 0) A (kappa A v [k] =1= 0)), (or simplified :) 

«k = 0 V k =1= 0 A kappa A v [k] =1= 0 » • 
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19.5. Influence of types 

The alternatives of a conditional expression must be either all arith­
metic or all Boolean. On the other hand, some of the alternatives of a 
conditional arithmetic expression may be of type real, others may be 
of type integer, i.e. these two types may be mixed. However, if this 
is done, the following rule - a consequence of SR, item 3.3.4 - must 
be observed: 

The value of a conditional arithmetic expression is of type integer 
if and only if all its alternatives are expressions which always produce 
values of type integer!. 

As an example, the expression (n declared integer, x declared real) 

<<if n = 1 t\ c~O then 13 else ntn 

is a real type expression since the expression «nt x» is of type real 
(d. 16.3.3). Therefore, if the first alternative is chosen, the expression 
has the value 13.0 of type real. 

19.6. Syntax of general expressions 

With the previous definitions we can now define the classes arithmetic 
expression, Boolean expression, expression: 

simple orilome/Ie expression (cf. 16.2) 

coodilional arilomeiic expression (cf. 18.2) 

simple Booleon expression (cf. 18.2) 

condilionol Boolum expression (of 19.4-) 

orilomefic expression 

expreJ'sion 

Boolean expression 

Fig. 13 

1 The purpose of this rule is that the type of value of an arithmetic expression 
can be determined at compilation time, and thus dynamic handling of types be­
comes unnecessary. 
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19.7. Further examples involving conditional expressions 

19.7.1. «x+(ift>tl then 1 else -1)/n. 

We recall that a conditional arithmetic expression cannot be used directly 
as a primary in a larger expression, but must for this purpose be enclosed 
in parentheses (the sequence «+ if» is always illegal). 

19.7.2. Selection of a component of an array with safeguards against 
exceeding the array bounds: 

«a [if k>n then n else if k < 1 then 1 else kJ ». 

19.7.3. Where conditional expressions are intended as comparands of 
a relation or as alternatives of a conditional expression, they must again 
be enclosed in parentheses: 

«if(if u then x elsey) >0 then (if Z= 0 then x+ y else x-y) else x xy». 

Incidentally, the following is an equivalent form of this expression: 

<<if (uJ\x >0 V -,uJ\y >0) J\ Z= 0 then x + y 
else if uJ\ x > 0 V -,uJ\y > 0 then x- y 
else x xy». 

19.7.4. <<if a>O then x =1= y else if a= 0 then x<y+1 else x> y-1 ». 

This is a conditional Boolean expression in which all occurring Boolean 
elements are relations. It is equivalent to the following simple Boolean 
expression (the parentheses are not actually needed but are placed for 
the sake of readability) : 

«(a> 0) J\ (x =l=y) V (a= 0) J\ (x<y +1) V (a< 0) J\ (x> y-1) ». 

19.7.5. <<if if a then b else c then d else e», 

(where a, b, c, d, e are Boolean variables). Here the Boolean expression 
in the if-clause is itself conditional, which is allowed but not recom­
mended. A more readable form is 

«if (if a then b else c) then d else e», 

but with the rules of 19.4.2 it could also be transformed into 

«(a J\ b V -, a J\ c) J\ d V -, (a J\ b V -, a J\ c) J\ e». 

19.7.6. The conditional (integer type) arithmetic expression 

«if a= 0 then (if b> 2 then (if c< 1 then 1 else 2) else if c= d then 
3 else 4) else if d> 0 then 5 else if abs (c) < 1 then 6 else if abs (c) = 1 
then 7 else 8» 



54 III. Expressions 

gives an exact picture of the following tree, insofar as it computes that 
exit which is used for given values of a, b, c, d: 

a=O 

(d!o) 
b>2 

((Jbs(c)z 7) 

c<7 
(Jbs(c)<1 

J 
(Jbs(c)=7 ((Jbs(c»1J 

1 
3 I{- 5 6 7 8 

Fig. 14 

§ 20. Subscript Expressions 
Whenever the syntax requires a subscript expression, this simply 

means that in principle only an integer-valued arithmetic expression 
would be meaningful at that position. However, since this would be a 
great disadvantage in computing practice and partly because there is 
no syntactic criterion for integer-valuedness of an expression, arbitrary 
arithmetic expressions are allowed as subscript expressions, but their 
values are automatically rounded to the nearest integer. 

20.1. Syntax 

a----1 arithmetic expression I 
Fig. 15 

I sllbscrlpt expression 

i.e. a subscript expression is just an arithmetic expression. 

20.2. Semantics (Rounding rule for subscript expressions) 

Whenever a subscript expression (i.e. an arithmetic expression stand­
ing in a position where the syntax requires a subscript expression) is 
encountered, this expression is first evaluated in accordance with the 
rules for arithmetic expressions. The value thus obtained is then rounded 
to the nearest integer and converted to type integer. This rounded 
value is taken as the value of the subscript expression. 

20.3. On the use of subscript expressions 

20.3.1. Subscript expressions are used in positions where strictly integer 
values are required, i.e. as subscripts, as actual parameters corresponding 
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to integer type formal parameters (as far as they are called by value, 
d. 44.6), and on the right side of assignment statements where the left 
side variables are of type integer. It was originally intended that only 
integer type expressions should be allowed in such places, but it was 
felt that this would be an impractical restriction. Therefore the rounding 
rule has been adopted in order to allow in such positions also real type 
arithmetic expressions which theoretically should produce integer values 
but which in reality contain small deviations caused by roundoff errors 
(e.g. 178.99999872, - 3·000001123, 10- 9). 

20.3.2. An example of such an expression is «nX(n-1) X(n-2)/6», 
where n is declared integer. We know that the resulting value should 
always be an integer, but since the result of a division is of type real, 
it may deviate by a small amount from an exact integer. A slightly 
different situation arises with the expression 

<<1.1547005 X sin (1.047197551 xk)) (k being declared integer), 

whose values are (for k=O, 1, 2, ... ): 0,1,1,0, -1, -1,0, .... 

20.3.3. On the other hand it should be kept in mind that the rounding 
rule is only intended as a countermeasure in cases where roundoff errors 
cause deviations from results which theoretically should be integers. It 
should not be used otherwise. Therefore an expression like 

«3.141592653589 xk» (k declared integer), 

the value of which is not generally close to an integer, should not be 
used as subscript expression, though of course the rules of ALGOL would 
allow it. In such cases it is recommended to achieve the rounding by 
means of the standard function entier. 
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Statements 

In ALGOL the statements are the units of operation, i.e. the smallest 
syntactic objects which define closed sUbcomputations. Various kinds of 
statements are in use, namely: 

The dummy statement: « », i.e. empty space. 
Assignment statements, e.g.: «y:= a+b-c[k]fPhi». 
Goto-statements, e.g.: «goto arica». 
Procedure statements, e.g.: «gauss (a, b, n) res: (x) ». 
For-statements, e.g.: dor k:= 1 step 1 until n do v [k] := 0». 
Conditional statements, e.g.: « if x> y then z : = sqrt (x - y) else 

y:= 1 ». 

In addition we have the possibility of grouping statements together to 
compound statements and blocks; these are again considered as state­
ments in all respects. 

§ 21. Assignment Statements 

An assignment statement serves to assign a computed value (value 
of an expression) to a simple or subscripted variable in order to preserve 
that value for later use. This value is then associated with the variable 
until a further assignment to the same variable overwrites it with another 
value. More generally, a single computed value may be assigned to several 
variables simultaneously. 

21.1. Examples 
«a:= 1 » 

«rec:= aA b V cA d» 
(w [k] : = arctan ((a - b)f(2 X c)))) 
(<dq:= rx:= false». 

In the last example, the logical value false is assigned to the Boolean 
variables dq and rx, while in the third example an arithmetic expression 
is evaluated and its value is assigned to the k-th component of an array v. 

21.2. Syntax 

An assignment statement consists of an arbitrary sequence of (simple 
or subscripted) variables, each one followed by an assignment symbol 
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(<:= ), the whole being followed by an expression. It therefore has the 
syntactic form 

«V:= V:= ... V:= E), 

where the V's denote variables which are called the assignment variables, 
and E stands for an arbitrary expression. The most frequently used 
special case with only one assignment variable, i.e. 

«V:= E), 

is sometimes referred to as a simple assignment statement, in contrast to 
the more general multiple assignment statement. 

Syntactic diagram: 

simple vcrrlcrble (ef. 1'1-. .?) 

slJbscl'ipleri v(Jr/crbie (ef. 7'1-.2) 

procedure Idenllfler (cf. '1-1. 2) 

Fig. 16 

Note. Only within the body of function procedure I may the procedure 
identifier I occur as assignment variable. 

21.3. Semantics 

21.3.1. If an assignment statement 

«l-i:= 11;:= ... v,,:= E) 

is encountered during the execution of a program, the following actions 
take place: 

a) If subscripted variables occur among the assignment variables, 
their subscripts are evaluated first. 

b) The expression E is evaluated. 

c) The value of E is assigned to all variables Vi. 
Though b) and c) will usually suffice to define the effect of an assignment 
statement, the full rule is necessary in order to guarantee an unambiguous 
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result in such cases as 

(lk:= a[kJ:= k+h. 

Indeed, if this statement is entered with k= 2, then the value 3 is 
assigned to a [2J, since the subscript 2 is determined before k is changed 
to 3. 

21.3.2. Restrictions. The fact that simple variables and arrays have 
scopes and that for subscripted variables the values of the sUbscripts 
must lie within the respective subscript bounds as prescribed by the 
corresponding array declarations, this fact also has certain consequences 
for assignment statements: 

The effect of an assignment statement is undefined if anyone of the 
assignment variables is nonexistent (in the sense of 42.2) at the 
location of the assignment statement. 

21.4. Influence of types 

21.4.1. All assignment variables of an assignment statement must be of 
the same declared type, i.e. either all real, all integer, or all Boolean. 
Furthermore, this type must be compatible with the type of the expression 
E on the right side: 

a) If the assignment variables are all Boolean, then E must be a 
Boolean expression. 

b) If the assignment variables are all real or all integer, then E 
must be an arithmetic expression. 

21.4.2. In case b) above, the type of the value of E may differ from 
the type of the assignment variables. However, since only values of the 
type of the Vi can be assigned to the Vi, the following actions take place 
(if needed) : 

a) If the assignment variables are of type integer, then E is eval­
uated as a subscript expression, i.e. its value is rounded to the nearest 
integer and converted to type integer before the assignment takes place. 

b) If the assignment variables are of type real, but the value of E 
is of type integer, then the value of E is converted to real type without 
changing its value. 

21.4.3. Thus examples such as (n, k being declared integer, x, y, z de­
clared real): 

«n:= (1.618033988tk - (- O.618033988)tk)/2.236067977», and 
(lx:=y:=z:=3» 

are meaningful; the first example assigns (for not too large k) the k-th 
Fibonacci number to n. The second gives the variables x, y, z the value 
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3.0 of type real. On the other hand 

« real t ; integer k ; t:= k:= 0) 

is illegal according to 21.4.1. 

§ 22. Sequences of Statements 
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In an ALGOL program the statements are written one after the other, 
usually in the order in which they should be executed, and separated 
from each other by semicolons. 

22.1. Examples 

22.1.1. The following sequence of statements describes the computation 
of the rotation angle of a Jacobi rotation in the p, q-plane, a [i, j] being 
the elements of the matrix to be rotated: 

(dheta:= (a[q,q]-a[p,p])f(2xa[p,q]) ; 
t := (if theta> 0 then 1 else -1)f(abs(theta)+sqrt(1 +thetat2)) ; 
c:= 1fsqrt(1+tt2); 
s:=txC). 

The resulting values c, s are the nontrivial elements of the orthogonal 
rotation matrix U which annihilates the p, q-element of UTA U. 

22.1.2. «denom:=axe-bxd; 
x:= (c xe- b xf)fdenom ; 
y:= (a xf-d xc)fdenom) 

describes the solution of the linear equations 

ax+by=c, dx+ey=f· 

The reader should be aware, however, that these examples are far 
from being complete programs; indeed, the latter must fulfill a number 
of additional requirements, for which see § 43. 

22.2. Syntax 

Statements are written in juxtaposition and separated from each 
other by semicolons (see Fig. 17). 

22.3. Semantics 

Except for interruptions, omissions and repetitions which are caused 
by goto-, conditional and for-statements respectively, the statements of 
an ALGOL program are executed in the order in which they are written 
down. That is, after the execution of one statement has been completed, 
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--l (uslgnmen! s/u/emenf (ef. t7.t) f--

dummy s!uiemenf (cf. tlf.1) 

golo-sfu/emen! (ef.t5.3) 

--1 procedure J'lulemenl (cf.36.3) f----
----l s/demenl I 

-------1 compound J'lufemenf(cf. 37.3) f--

block (cf.tU) 

----l cond/flona'! sfu/emen/(cf. 39.3) t--

for-sfo/emenf(cf.JO. 3) 

O----I---t-~s;.'!!:u/.~emll7!!!.en~f:J sequence of sfu/emenls 

Fig. 17 

the statement after the following semicolon comes into action. It is 
explicitly understood that the execution of one statement does not begin 
before the execution of the preceding statement has been completed. 

§ 23. Labelled Statements 

Any statement of an ALGOL program may be furnished with a label 
(d. § 11); the two together form a labelled statement. Such a label may 
be placed for explanatory purposes or for marking the destination of 
a jump. 

23.1. Examples 

«arica: v [kJ := arctan ((a - b)/(2 X c)))) 
«jump: 90to arica» 
«k137: for k:= 1 step 1 until n do s:= s+v[kJt2» 
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are labelled assignment, goto-, and for-statements respectively. 

«may: label7 : elim : gauss (a, b, n) res: (x) » 
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is a procedure statement with three labels in front of it. According to 
the rules this is allowed and the whole is again a procedure statement. 

23.2. Syntax 

23.2.1. If S denotes a statement, and L stands for a label, then 

«L: S» 

is the syntactic form of the labelled statement. 

23.2.2. A labelled statement is again considered as a statement of the 
same kind and therefore has the same properties and is subject to the 
same restrictions as the corresponding unlabelled statement. Especially, 
a labelled statement may again be labelled, as shown by the last of the 
examples 23.1. 

23.2.3. Syntactic diagram: 

o--j label (cf: § 71) =t---O----1 X-slatement t---lX-slalement I 
Fig. 18 

(valid for X = "assignment", "dummy", "goto", "procedure", "com­
pound", "conditional", "for", and mutatis mutandis also for" block"). 

23.2.4. In the following text we shall give all syntactic and semantic 
definitions for the respective unlabelled statements; the possibility of 
labelling statements is considered as self-evident and therefore not further 
mentioned. 

23.2.5. Notations. The label in front of a statement is called the label of 
the statement, and the statement obtained by depriving the labelled state­
ment of all its labels is called the unlabelled tail. 

Furthermore, in our text the label in front of a statement will often 
be used as the name of the statement such that e.g. the first of the 
statements in 23.1 above would be referred to as "the statement arica". 
It must be pointed out that this is used only for explanatory purposes 
and has no bearing on the execution of a program. 

23.3. Semantics 

A labelled statement, whenever encountered during execution of an 
ALGOL program, has exactly the same effect as the unlabelled tail would 
have. As a consequence all semantic rules for statements also apply 
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automatically to the respective labelled statements. Indeed, a label has 
a computational purpose only insofar as a goto-statement may cause a 
jump from another place in the program to that label. 

§ 24. The Dummy Statement 
The dummy statement is a statement with no effect whatsoever. It 

may be used at places where syntactically a statement is required but 
no effect is wanted. 

24.1. Syntax 
The dummy statement consists of blank space. 

24.2. Semantics 
The dummy statement has no effect. 

24.3. Examples 
A dummy statement may occur through one of the following syntactic 

combinations: 

«; ;», «begin ;», «else ;», «; end», «begin end», «then ;», 
« then else», « do ;», «then end», « do end». 

24.4. Applications 
Like all other statements the dummy statement may also be labelled. 

This permits placing a label where it otherwise would not be allowed, 
e.g. in front of the symbol «end»: 

«; may: end». 

Indeed, this combination is used frequently for jumping to the very end 
of a compound statement, as will be demonstrated by some of the ex­
amples in the following chapters. 

It should be recognized, however, that the label may is not attached 
to the symbol « end», which would be syntactically impossible, but to 
the dummy statement (blank space) between the semicolon and «end I). 
As a consequence, the semicolon in front of the label is indispensable. 

§ 25. Goto-Statements 
Goto-statements serve to interrupt the normal order of execution 

of a program by a jump to a specified place. 

«goto m17», 
«jump: goto arica», 
«goto ammon [k + 17J I). 

25.1. Examples 
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25.2. Syntax 

A goto-statement has one of the syntactic forms l 

where L denotes an arbitrary label, and «gofo L», 
«gofo WeE] I), where W is a switch identifier (name of a switch), and E 

is a subscript expression. The construction « W[E]» is 
called a switch designator (d. § 40). 

Syntactic diagram: 

switch 
Idefllif/er 
rcf. '10. g) 

sl/bscript 
e)(pression 
ref. 20.1) 

/obe/ rcf. § 11) 

25.3. Semantics 

gala slotemenl 

25.3.1. A goto-statement «gofoL» causes a jump to that statement SL 
in front of which the label L is found as destination label. This has the 
effect that from now on the statement SL and all following are executed 
(again in their natural order) until a further goto-statement is en­
countered. 

25.3.2. A goto-statement «gofo W[E]» is essentially equivalent to 
«gofo Lk », where k is the current value of E and Lk is the k-th entry in 
the switch list of the declaration for the switch W. For more details 
see § 40, Switch Declarations. 

25.3.3. Restrictions. In order that the jump to a destination label L be 
meaningful, the following requirements - derived as special cases of the 
rules of scopes given in § 42 - must be fulfilled: 

For every goto-statement «gofo L» there must be a unique destina­
tion label L such that the smallest block or controlled statement (which­
ever is narrower) containing L also contains the goto-statement. 

As a consequence, no jump from outside into a block or for-statement 
is possible, but of course jumps from inside these objects to destinations 
outside are allowed. 

25.3.4. For the restrictions applying to goto-statements of the form 
«gofo WeE] I), see § 40, Switch Declarations. 

1 According to the SR, item 3.5.1, no other forms of the goto-statement are 
possible in SUBSET ALGOL 60. 
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25.4. Applications 

Neglecting for the moment the question of scopes - this will be 
dealt with in great detail in § 42 - we proceed to some trivial examples 
of situations that may arise with goto-statements. More realistic examples 
can only be given in connection with conditional statements (d. § 28, 
§ 29). 

25.4.1. « g oto ariea ; 
comment jump forward, skipping parts of the program; 

ariea: t:= t + 1,). 

25.4.2. «acryl : zeta := zeta + 2 ; 

goto aeryl ; 
comment jump backwards, parts of the program are re­

peated, we obtain a loop; 

25.4.3. «begin 
switch wernik := ariea, aeryl, m17, larix; 
goto wernik[kJ ; 

arica: ; comment this for k = 1 ; 1 

goto common; 
aeryl: ; com ment this for k= 2 ; 

goto common; 
m17: ; comment this for k= 3 ; 

goto common ; 
larix: ; com ment this for k= 4 ; 

common: 
end,). 

Here, by virtue of switch wernik, the computation follows one of four 
possible branches of the program depending on the current value of k. 
Afterwards the common course of the calculation (i.e. the statements 
which would follow «end ,») is taken up again. 

1 The rule that requires a semicolon or «begin., in front of «comment» forces 
us to construct a dummy statement «arica: ;., if we want to place a comment 
after a label. 
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25.5. Closed loops 
log (x) can be computed iteratively by a method based on the half­

argument formula of the hyperbolic cosine and described by the follow­
ing piece of program: 

«p := (x + 1/x)/2 ; 
q := (x-1/x)/2 ; 

iterat: 
p:= sqrt(0.5 +0.5 xP) ; 
q:= q/P ; 
goto iterat)}. 

Every time the bottom is reached, a jump back to iterat occurs with 
the effect that the last three statements are executed over and over 
again and thus produce an infinite sequence of pairs p, q (every new 
pair overwrites its precedessor) where the p's converge to 1 and the q's 
to log (x). However, since the computation never comes out of this cycle 
and therefore cannot produce any results, this program is not meaningful. 
Indeed, closed loops, as such never-ending repetitions of the same piece 
of program are called, must be carefully avoided. As will be shown later, 
this can be done by making goto-statements conditional; however, as 
trivial as this may seem, often only a careful analysis, taking the in­
fluence of roundoff errors into account, can ensure that a loop is really 
not closed. 

§ 26. Procedure Statements 11 
A procedure statement serves to initiate execution of an ordinary 

procedure which either has been declared somewhere in the program 
(d. § 41 and Chapter VII) or is one of the standard I/O-procedures 
described in Chapter VIII. 

26.1. Examples 
26.1.1. U nstructurized procedure statements: 

«gauss: iordan : matinv (75, aa, nores))} 
«polar)} 
«euler (0, m [k], arctan (0.01), g + 1, equ, I, u))} 
«remark (xl, 27, 'divergence u at u xl = '))} 

(Wutreal (15, xt2) )}. 

26.1.2. Structurized procedure statements: 

«gauss: iordan : matinv (75) trans :(aa) exit: (nores))} 
(<euler (0, m [k], arctan (0.01), g + 1, equ) trans: (I) res: (u) )} 
«remark (xl) lines: (27) text: (' divergence u at u xl = ') I}. 

1 In this section we describe mainly the syntactic rules for procedure state­
ments; the semantics will be described later in § 45. 

5 Rutishauser, Description of ALGOL 60 



66 IV. Statements 

26.1.3. By virtue of the corresponding procedure declarations as given 
in Chapter VII, these examples have the following meaning: 

The call of matinv inverts a 75 X 75-matrix, given as an arrayaa, 
essentially by the Gauss-Jordan method [29J such that after termination of 
the procedure call the array aa contains the computed inverse (the matrix 
is inverted on the spot!). However, since the diagonal elements are 
chosen as the pivot elements irrespective of their size, the procedure call 
may fail because one of these pivots vanishes, in which case a jump to 
the label nares occurs. 

The call of polar computes, for a point with given cartesian coordi­
nates x, y, its polar coordinates r, phi. 

The call of euler integrates a system of differential equations of order 
m[kJ from x=Owithgiveninitial valuesf[1J, f[2J, ... , f[m[kJJ overg+1 
steps of length arctan (0.01). The system is defined by the declaration 
for procedure equ, which is also given as an example in § 44. The solution 
is obtained as a two-dimensional array u, where u [i, jJ is the i-th com­
ponent of the solution at the i-th meshpoint. 

The call of remark prints the text «divergence at xl = », followed by 
the current value of the variable xl and 27 blank lines. 

According to the definition of the standard IIO procedures, the call 
of outreal outputs the value of xt2, whereby the output medium and 
the format are defined by the channel number 15. 

26.2. Syntax 

26.2.1. The unstructurized procedure statement has the syntactic form 

«/» or <<l(A, A, ... , A) », 

where I denotes an arbitrary identifier (the name of the procedure to 
be called) and the A's are the actual parameters, which define the objects 
upon which the procedure should operate in the present call. The A's 
may be expressions or identifiers or strings. 

26.2.2. Structurized procedure statements are obtained by replacing one 
or more of the commas separating the A's by syntactic objects 

«)XX ... X:(», 

where the X represent arbitrary letters. Such a construction is called a 
parameter delimiter. 

Note. For the Handbook a special form of the structurized procedure 
statement is recommended (d. 44.4.3). 

26.2.3. Syntactic diagram (see Fig. 20). 
26.2.4. Restrictions. The syntactic form of a procedure statement is to 
some extent bound by the corresponding procedure declaration. Indeed, 
if I stands for the procedure identifier, then the syntactic form must be 
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<<1 », if the declaration for I has the syntactic form 
«procedure I; 5», and 

<<1(Al' A 2, •.. , Ap) », if the declaration has the syntactic form 
«procedure I(I{,~, ... ,Ip); VCS». 
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In the second case the number of actual parameters must be equal to 
the number of formal parameters in the corresponding procedure declara­
tion. Moreover, the k-th formal parameter ~ and the k-th actual para­
meter Ak (counted from left to right) are said to be corresponding, which 
in turn implies a number of relations that must hold between Ak and~; 
these will be stipulated only in § 45. 

s· 

expression r cr. T9.6.} 

variable Identifier r cf 38.8) 

array idenlifi'er ref. J.9.8) 

SWilCfl idenlif/er (ef 'IO.J) 

label idenl/fier (cf 'IT. 2) 

~ procedure identifier (ef. 'IT. 2) 

procedure 
idenlifi'er 
(cr. 'IT.2) 

siring idenlt'fier ref. '11.2) 

siring (ct T2.2) 

Fig. 20 

f--

~ 

~ H {Ie/ual I 
~ 

parameler 

r--
f-

parameter delimiter 
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26.3. Semantics 

26.3.1. Scopes. All identifiers occurring in a procedure statement must 
represent (true or formal) quantities which exist at the location of the 
procedure statement. In other words, a procedure statement must be 
located within the scope of the procedure which it calls, and also within 
the scopes of all quantities whose identifiers appear among the actual 
parameters. 

As an example, the procedure statement 

«euler (0, m[kJ, arctan (0.01), g+1, equ, f, u»> 

must be located within the scope of procedure euler, and in the environ­
ment of this call, quantities m, k, arctan 1, g, equ, f, u must exist. 

26.3.2. Execution of a procedure statement. A procedure statement causes 
execution of the corresponding procedure and at the same time defines 
- through the actual parameters - the quantities and values to be 
used as operands in that execution. The procedure then performs upon 
these operands essentially the actions which are prescribed by the pro­
cedure declaration for the corresponding formal parameters. For more 
precise information see Chapter VII. 

§ 27. Compound Statements and Blocks 

An arbitrary number of consecutive statements may be grouped to­
gether into one (compound) statement simply by enclosing them in the 
word-symbols «begin» and «end». This has the effect that certain 
actions which in principle apply to only one statement (mainly for- and 
if-clauses) can be extended to operate on several statements simultane­
ously. 

In addition, declarations can be inserted after the «begin» of a com­
pound statement; in this way we obtain a new element called a block. 

Compound statements and blocks are themselves statements and 
therefore may appear in ALGOL programs wherever the rules allow for 
a statement. 

27.1. Examples 

27.1.1. The sequence of statements given in 22.1.1 is immediately turned 
into the following compound statement: 

1 arctan means here the standard function. This does not mean that the con­
dition that it should exist is superfluous; indeed, the standard functions could 
also be suppressed by declaring their names for other purposes (d. 42.2.5). 
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(begin 
theta:= (a[q,q]-a[p,p])/(2xa[p,q]) ; 
t : = (if theta > 0 then 1 else -1)/(abs (theta) + sqrt (1 +thetat2)) ; 
c:= 1/sqrt(1 +tt2) ; 
s:= txc 

end». 

27.1.2. «begin 
a:=c+1/c-2 ; 
b:= cxat4 ; 

mjc: begin 
t:= aXb/c; 
v:=a/bxc 

end mjc ; 
a:= at1.2 

end». 
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This compound statement contains four statements, one of which is itself 
a (labelled) compound statement 

«mjc: begin t:= a xb/c ; v:= alb xc end ». 

27.1.3. «block: begin 
real t ; 

t := (1 +at3 +at6)/(1 +at2+at4) ; 
a : = exp (tt2/2) - a X cos (t) + sqrt (t + 1/t) 

end» 

is a labelled block. The declaration at its beginning introduces a new 
variable t which is existent only within this block and serves there as an 
auxiliary variable for storing the value of the expression 

«(1 +at3 + at6)/(1 +at2+at4)) 
temporarily. 

27.2. Syntax 

27.2.1. Compound statements and blocks have the syntactic forms 

«begin S ; S ; ... ; S end» and 
«begin D ; D ; ... ; D ; S ; S ; ... ; Send» 

respectively, where the S's denote arbitrary statements and the D's re­
present arbitrary declarations (d. Chapter VI). 

The construction «begin D; D; ... ; D ; », which contains all declara­
tions of a block, is called the block head. 

Note. Since compound statements and blocks are again statements, 
the following are allowed constructions: 
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« begin S ; S ; begin D ; D ; S ; Send; begin S ; Send; Send » 

«begin D ; S ; begin D ; S ; begin D ; S ; S end end end». 

However, it is not allowed to precede a declaration with a state­
ment; indeed, a declaration may only be placed after a begin or after 
another declaration. 

27.2.2. Syntactic diagram: 

sequence of 
slalements 
(eP.22.2) 

.-_....--1 type declaralion 
(ef. 38.8) 

f-------I arr(lY declaralion 
(ef 3.9. 2) 

1--.-+---1 swllclJ dec/arollon 
(cf'l-O.2) 

proDedlJre dec/(lral/on 
(Df.'l-l.2) 

seql/enceaf 
slalements 

(d:22.2) 

Fig. 21 

compound sfr7lemenl 

27.2.3. Remarks. Since the semicolon is required only for separating 
statements, no semicolon is needed in front of the end (If we do place 
one, this introduces a dummy statement but causes no error). However, 
if a compound statement or block is followed by another statement, a 
semicolon is needed after the « end » (If we forget it, the subsequent 
statement is considered as a comment, and this is indeed an error). 

27.3. Semantics of compound statements! 

27.3.1. The execution of a compound statement is equivalent to the 
execution of the sequence of statements contained in it, and this is 
described in 22.3. However, the following exceptions must be observed: 

1 For the semantics of blocks see § 42. 
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In addition to the normal entrance to a compound statement, i.e. the 
entrance through «begin), it may also be entered by a jump from outside 
to one of the labels contained in it. In that case the compound statement 
is executed from that label onwards. Moreover, in addition to the normal 
exit from a compound statement, i.e. the exit through «end), an exit 
from a compound statement may also occur by a jump to a label located 
outside. 

27.3.2. It is thus apparent that the «begin) and «end) of a compound 
statement have no bearing on the execution of a program, with the ex­
ception of those cases where the compound statement is 

either a complete program (d. § 43), 
or the controlled statement of a for-statement (d. § 30), 
or an alternative of a conditional statement (d. § 28 and § 29), 
or a procedure body (d. § 44). 

For instance, in the compound statement given as example 27.1.2, the 
«begin) and «end) of the internal compound statement (labelled mic) 
could be omitted without the slightest alteration of the operational effect 
of this piece of program. Whether the outer « begin) and «end) could 
also be removed depends upon the environment into which this com­
pound statement will be embedded. 

§ 28. The If-Statement 

A statement can be made conditional by placing an if-clause in front 
of it. This if-clause states the condition under which the subsequent 
statement is executed. 

If-clause and subsequent statement together are the if-statement, 
which is the simplest kind of conditional statement, while all kinds of 
statements described in § 21-27 are called unconditional statements. 

28.1. Examples 

28.1.1. (df x=o then x:= 10-20). 

This obviously means that a vanishing x is replaced by a small non-zero 
number, e.g. in order to avoid trouble in a later division. If x =l= 0, this 
statement has no effect. 

28.1.2. (df k> 0 A k < 5 then goto wernik [k] ) . . 
if-clause goto-statement 

It is assumed that wernik is the switch declared by the example in 25.4.3. 
Here, the if-clause serves to prevent the computation from running into 
the undefined situation mentioned in 40.3, c. 
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28.1.3. (d. 22.1.1). 

« if rotate then 
begin 

theta:= (a[q,q]-a[p,p])/(2xa[p,q]) ; 
t : = (if theta > 0 then 1 else -1)/(abs (theta) + sqrt (1 +thetat2)) ; 

c:= 1/sqrt(1+tt2) ; 
s:= c xt 

end). 

Here the whole compound statement is subject to the if-clause, i.e. if 
the Boolean variable rotate has the value false, none of the statements 
is executed. Obviously «begin) and «end) have an operational meaning 
in this case, namely they prevent the first of the four statements from 
being the only one subject to the if-clause. 

28.1.4. «if x>O then put: z: = if y< x then x else y). -------if-clause labelled assignment statement 
(with conditional expression on the right side). 

28.1.5. 
Conditional Boolean expression 

(df (if x~ 0 thenz>cos (sqrt (x)) elsez>coshyp (sqrt( - x))) then x:= 0). 

-------if-clause state-
ment 

Assuming that «coshyp (x))) is a function designator which computes the 
hyperbolic cosine of the argument, the condition in the if-clause checks 
whether the value of z exceeds the value of the entire function cos VX . 

28.2. Syntax 

The if-statement has the syntactic form 

« if B then Sif)' 

where B represents an arbitrary 1 Boolean expression and Sif is any 
statement whose unlabelled tail does not begin with the symbol «if). 
Where an if-statement is followed by the symbol «else), it is always 
part of an if-else-statement, for which see § 29. 

1 As in the case of conditional expressions, it is also recommended to use only 
simple Boolean expressions here. 
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Syntactic diagram l : 

dummy 
,slqlement 
(ef. 2¥.1) 

(Jssignment 
s/(J/emenf 
(cf.2!.2) 

I g%-s/(J/emen/ I 
I (ef. 25.2) 1 

procedure 

I {Iflcondilion(J/ I 
I sl(J/emen/ 

st(J/ement 
(d28.8) 

compound 
s/(J/emen/ 
(dzu) 

I block 

l (ef. 27.2) 

Fig. 22 

28.3. Semantics 

28.3.1. The execution of an if-statement «if B then Sifl> involves the 
following operations: 

a) Evaluation of the Boolean expression B, and 
b) Execution of the statement Sif' if B has the value true, but 
c) No further action, if B has the value false. 

1 The reason why the for-statement is not ranked among the unconditional 
statements (this is a difference between the original and the revised ALGOL report) 
is to avoid the ambiguity that could arise in connection with for- and if-else-state­
ments (cf. 30.4). 
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Thus an if-statement with B= false is equivalent to a dummy statement, 
while for B= true it is as if the if-clause were not present!. 
28.3.2. If a jump from outside Sif is directed to a destination label which 
is part of Sif' then the if-clause is disregarded. Thus a jump to the label 
put in example 28.1.4 would be allowed and would cause the uncon­
ditional execution of the statement «z: = ... ), whereupon the sub­
sequent statement is taken up: 

if x> 0 then put: z : = if y < x then x else y ; 

j.--------?) execution 

goto put ----~ 
Fig. 23 

28.4. Applications 

• 

28.4.1. The historical background of the if-statement is the conditional 
jump as a machine code instruction, and indeed also in ALGOL the cor­
responding device « if . .. then goto ... ) is used frequently, especially 
for breaking closed loops. 

However, the customs in writing programs in machine code need not 
necessarily be taken over into ALGOL. For instance, in ALGOL the ex­
ample 28.1.3 is more appropriate than the equivalent form 

« if -, rotate then goto over ; 
theta:= {a[q,qJ-a[p,pJ}J{2xa[p,qJ} ; 
t := {if theta> 0 then 1 else -1}J{abs {theta} + sqrt {1 + thetat2}} ; 
c := 1 Jsqrt {1 + tp} ; 
s:=txc; 

over: ... ), 

which has a strong scent of machine code. 
28.4.2. The breaking of closed loops may now be demonstrated: Take for 
instance the example in 25.5; it can now be modified into 

«p:= {x+1Jx}J2 ; 
q := (x -1/x)/2 ; 

iterat: p:= sqrt(0.5+0.5 xP) ; 
q:=q/P; 
if p > 1.000015 then goto iterat ; 

final: log:= 3 xq/(2+P) ). 

Obviously the jump back to iterat occurs as long as p > 1.000015, which, 
because p converges to 1, will not be true forever. Thus, sooner or later, 

1 This is correct only in SUBSET ALGOL 60 because otherwise the evaluation 
of function designators occurring in the Boolean expression B could produce a 
side effect (cf. 46.5). 
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the loop will be discontinued, and the computation will continue with 
the statement final. 

An equivalent setup is 

«p:= (x+1/x)/2 ; 
q := (x-1/x)/2 ; 

iterat: if p > 1.000015 then 
begin 

p:= sqrt(0.5+0.5 xP) ; 
q:=q/P; 
goto iterat 

end; 
final: log:= 3 xq/(2+P) )}. 

The only difference between this and the first version is that when (in 
the second version) for the first time p ~ 1.000015, the jump to iterat 
occurs again, but then the if-statement acts as a dummy statement, and 
therefore its successor - the statement final - comes into action. 

In devising such a scheme for breaking closed loops, it must be en­
sured that it works not only with the theoretically expected values, but 
also with the numbers occurring in the actual computation. In the above 
examples the roundoff errors might have the effect that the numerically 
calculated values p forever remain above 1.000015, and then we would 
again have a closed loop despite our attempts to prevent it. In the 
above examples the constant 1.000015 (chosen to yield a 10-digit log­
arithm) is far enough away from 1 to guarantee discontinuation of the 
loop for computers with at least an eight-digit (decimal) mantissa. 

28.4.3. Warning: According to the syntax, the sequence 

<<if x=O then if a>b then t:= i)} 

is obviously not allowed. To describe the desired effect in correct ALGOL, 
we must write instead 

<<if x= 0 then begin if a> b then t:= 1 end)} 

(in this way the statement following the first «then)} becomes uncon­
ditional). We note in passing that as long as the values of a, b cannot be 
undefined, the same could also be achieved by 

<<if x=OAa>b then t:= h. 

However, this latter form may be less efficient in cases where the if­
statement is executed frequently and the condition X= 0 seldom fulfilled. 

28.4.4. It goes without further mention that in the sequence 

«if z =!= 0 then p := 0 ; goto arica)}, 
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only the statement «p := 0» is subject to the if-clause. If it is intended 
that the jump, too, should be conditional, the whole must be rewritten as 

«if z =1=0 then begin p := 0 ; goto arica end I). 

§ 29. The H-Else-Statement 

The if-else-statement is an extension of the if-statement and allows 
selecting and executing one of several unconditional statements, the 
latter being called the alternatives of the if-else-statement. The selection 
is made via a number of conditions which, together with the alternatives, 
constitute the if-else-statement. 

The if-else-statements together with the if-statements form the class 
of conditional statements. 

29.1. Examples 

29.1.1. « if x> 0 then goto posi else goto nega» 
-...--- ______ '--v-' 

if-clause first alter- second alter-
native native 

This statement causes a jump to posi if x>O or a jump to nega if x~O. 

29.1.2. Intervalwise approximation of the Bessel function Jo (x): 

« if abs (x) < 8 then 
begin 

real t ; 
t:= - xt2/32 ; 
jO:= 0.99999999 +t X (7.99999999 +t X (15.999998 78 

end 
else 

+ t X (14.22220320 +t X (7.11100752 +t X (2.275 26080 
+tx(0.50517760+tx(0.08202176+tx(0.00995072 
+ t X (0.000860 16 + t X 0.000 040 96))))))))) 

begin 
real t, pO, qO, Y ; 
t:= - 64/xt2 ; 
pO:= 0.79788456 +t X (0.000876 54 +t X (0.00002157 

+txO.00000128)) ; 
qO:= 0.01246695 +tx(0.00011415 +tx(0.00000549 

+t X 0.000 000 51)) ; 
y :=x-0.785398163xsign(x); 
jO := (PO xcos(y) +qO xsin(y) x 8/x)/sqrt (abs (x)) 

end». 
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Both alternatives of this if-else-statement are blocks; the first block 
approximates the power series between - 8 and + 8, the second uses 
asymptotic series for representing the function outside the interval 
Ixl < 8. The maximum error is on the order of 10-7. 

29.1.3. Example with more than two alternatives (square root x+iy of 
a complex number c=a+ib): 

if P = 0 then x : = y : = 0 
else 

if a>O then 
begin 

x:= sqrt((a+p)/2) ; 
y:= b/(2 xx) 

end 
else 

begin 
y := if b~ 0 then sqrt((p -a)/2) 

else -sqrt((p -a)/2) ; 
x:= b/(2 xy) 

end». 

29.2. Syntax 

{ this statement is outside 
the conditional statement. 

first alternative: c= o. 

I second alternative: if c is 
in the right half plane. 

I third alternative: if c is in 
the left half plane or on 
the imaginary axis, but 
not zero. 

29.2.1. An if-else-statement has basically the syntactic form 

(1 ) «if B then U else 5», 

where B denotes a Boolean expression, U an unconditional statement, 
i.e. one beginning with neither »for« nor »if«, and 5 stands for an 
arbitrary statement. 

29.2.2. Since the 5 in (1) above may itself be an if- or an if-else-statement, 
we are finally lead to the most general form of the conditional statement, 
expressed in terms of unconditional and for-statements l : 

The open form: 

(2) «if Bl then U1 else if B2 then U2 else ... else if Bn then Sil» 

The closed form: 

(3) «if Bl then U1 else if B2 then ... else if Bn then Un else Sif». 

1 As in § 28, Sif denotes a statement whose unlabelled tail does not begin with 
the symbol (df», i.e. an unconditional or a for-statement. 
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29.2.3. Terminology. In the syntactic forms (2), (3) above the statements 
Ui and Sif are called the alternatives of the if-else-statement. This term 
is sometimes also used for the simple if-statement, which occurs as a 
special case of the open form for n = 1, although the term may seem 
somewhat misplaced in this case. 

29.2.4. Syntactic diagram lor the il-else-statement: 

if-siaiemel7l(cf.28.2) 

if-e/se-skiemenf 

Fig. 24 

1f-e/se-s/(Jiemel7t 

conrllllOllol sfafemel7t 

29.2.5. Labels in an il-else-statement. Since in the syntactic representa­
tion (1) the statement U as well as S may be labelled, labels may appear 
in the syntactic representations (2), (3) not only in front of the alter­
natives Ui' Sit> but also in front of any if-clause. Thus 

«p: if x= 0 then q: y : = 0 else r: if y =i= 0 then s: x : = 2 else t: goto I» 
_________ '----v--"' '----v--"' 

if-clause U S --------- '-..-" 
if-clause U S 

would be allowed. 

29.2.6. Warning. It seems that because of the rule which requires that 
statements be separated by semicolons, programmers have the habit of 
automatically placing a semicolon after every statement. Some of these 
may be superfluous insofar as they just generate dummy statements 
which do no harm. However, if a semicolon is placed after one of the 
alternatives (except the last one) of an if-else-statement, e.g. 

« if x= 0 then goto posi ; else goto nega», 

this is a syntactical error; in fact, the combination «; else» is never 
correct outside strings. 
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29.3. Semantics 

29.3.1. The simplified rule. As long as no jumps into one of the alter­
natives occur, the effect of an if-else-statementrepresented in theform (1) 
can be visualized as follows: 

8= true execulion of U 
--=e.-o !,--,ry'---o--{ 8 exif 

8=false execul/Ofl of J' 

Fig. 25 a 

As a consequence of this we immediately obtain an analogous picture 
defining the effect of an if-else-statement represented by one of the 
syntactic forms (2) or (3): 

eolry false 

exit __ --'------o_--L..,._ 

for the open form 

Fig. 25 b 

exil 

'--r----' 
for Ihe dosed form 

29.3.2. Equivalence rule for if-else-statements. Usually the above diagrams 
will be sufficient, but the most general case requires the following more 
precise rule: 

An if-else-statement (df B then U else S» is defined to be equivalent 
to the compound statement 

L: 

«begin 
if B then begin U ; goto Lend; 
S' , 

end», 

in which L denotes a label considered to be different from any other label. 

In case S is again an if-else-statement, the same rule is applied again 
to S, etc. until finally (and after removal of some unnecessary begin's 
and end's) the following equivalent forms for the syntactic representa­
tions (2) and (3) are obtained: 
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For the open form (2): 

«begin 

L: 

if Bl then begin U1 ; goto Lend; 
if B2 then begin U2 ; goto Lend; 

if BtI - 1 then begin Uti-I; goto Lend; 
if Btl then Sif ; 

end». 

For the closed form (3): 

«begin 

L: 

if Bl then begin U1 ; goto Lend; 
if B2 then begin U2 ; goto Lend; 

if Btl then begin Uti; goto Lend; 
Sif ; 

end». 

In this way the if-else-statement is expressed entirely in terms of if­
statements and therefore the semantics of the former follows now 
from § 28. 

29.3.3. An example for which only the general rule gives the correct 
answer, is l 

<df x=o then adv: x:= y-1 
else 

r: if y > 1 then 
begin 

y:=y+c; 
if c < 0 then goto r ; 
if c > 1 then goto adv 

end 
else 

polar». 

first alternative 

I second alternative 

third alternative 

With the equivalence rule above, this transforms into 

«begin 
if x= 0 then begin adv: x:= y -1 ; goto exittt end; 

r: if y > 1 then 

1 Needless to say we do not recommend such jumping within an if-else-state­
ment, since it tends to disguise the intentions of the programmer and thus may 
give a skew picture of the computing process. 
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begin 
begin 

y:=y+c; 
if c<o then goto r ; 
if c > 1 then goto adv 

end; 
goto exittt 

end; 
polar; 

end». 
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It follows that if the given statement is entered e.g. with x =1=0, y > 1, 
then the second alternative is taken up. If furthermore c< 0, then a 
jump from inside the second alternative back to the label r occurs, 
which causes a second entry into the second alternative. This repetition 
continues until finally y ~ 1, whereupon the third alternative (procedure 
statement «polar») is executed, after which the execution of the if-else­
statement is terminated. If, however, c was> 1, then «goto r» is skipped 
and «goto adv» executed instead, which causes a jump to and execution 
of «x:= y -1 », after which the execution of the if-else-statement again 
terminates. 

29.3.4. If-else-versus sequence of if-statements. Example 25.4.3 could now 
be rewritten equivalently as 

(df k = 1 then arica: beg in ... end 
else 

if k=2 then acryl: begin ... end 
else 

if k= 3 then m17: begin ... end 
else 

if k=4 then larix: begin ... end». 

It would seem that in this example, where the four conditions are dis­
joint, the else's could just as well be replaced by semicolons, thus 
splitting the if-else-statement into four if-statements. Often this is true; 
however, k might undergo changes in one alternative, which could have 
the effect that one of the later conditions would also be fulfilled, and then 
the sequence of if-statements would no longer be equivalent to the 
if-else-statement. In this sense the if-else-statement is safer, insofar as 
the rules guarantee that always only one of the alternatives is executed. 

29.4. Efficiency considerations 

Obviously the rules allow arranging if- and if-else-statements in 
several ways, all of which yield the same effect but may differ widely in 

6 Rutishauser, Description of ALGOL 60 
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efficiency. No rules can be given as to which setup is the most economical, 
but a few examples may be helpful: 

29.4.1. Example 25.4.3 is a more efficient form than 29.3.4 since the 
latter requires testing of two conditions on the average while the former 
directly selects the proper label. 

29.4.2. « if x =1= 0" y > 0 then alpha 
else 

if x =1= 0" Z= 0 then beta 
else 

if x =1= 0" Z> 2 then gamma 
else 

if x =1= 0 then delta» 

(alpha, beta, gamma, delta being procedures without parameters). If the 
condition x =1= 0 is seldom fulfilled, then it is better to test this condition 
first, making the other conditions subordinate to it: 

« if x =1= 0 then 
begin 

if y>O then alpha 
else 

end». 

if Z= 0 then beta 
else 

if z>2 then gamma 
else 

delta 

Indeed, in this way x =1= 0 is tested only once, and only if the condition 
holds, are the other conditions tested at all. 

An equally economical version is 

« if x= 0 then 
else 

if y>O then alpha 
else 

if Z= 0 then beta 
else 

if z>2 then gamma 
else 

delta». 

We observe that the first alternative is a dummy statement which 
causes skipping of the whole in case x =1= 0 is not true. 
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§ 30. The For-Statement 

A for-statement is a shorthand notation for a loop. It consists of a 
controlled statement and a preceding lor-clause. The latter defines how 
often and for what values of the running subscript the controlled state­
ment should be executed. 

30.1. Examples 

30.1.1. «fori:= 1 step 1 until n do v[i]:= 0». 
I II I 

for-clause controlled 
statement 

This for-statement annihilates all components 1 through n of the vector v 
and thus in a certain sense represents the vector operation v : = o. 
30.1.2. «h:= 0 ; 

for k:= n step -1 until 0 do h:= h xx+a[k] ». 
I I I I 

for-clause controlled 
statement 

Here the controlled statement «h:= hxx+a[k]» is executed once for 
each of the values k= n, n - 1, n - 2, ... , 1, 0 (in that order) and thus 
by virtue of the initialisation «h:= 0» computes the value of the poly-

n 

nomial L a [k] Xk by HORNER'S rule. Thus, obviously, a running subscript 
k=O 

may also run backwards. 

30.1.3. Example with a nested loop (generation of unit matrix): 

I for-clause 1 I 
«for i : = 1 step 1 until n do 

for j:= 1 step 1 until n do a[i, j]:= if i=j then 1 else 0». 
I for-clause 2 I L- controlled statement 2 -_I 

'-------- controlled statement 1 I 

Controlled statement 1, which is itself a for-statement, is executed for 
all i, hence controlled statement 2 is excuted for all i and j. 

30.1.4. Multiplication of matrix a with a vector b: 

«for i : = 1 step 1 until n do 
comp: begin 

6* 

c[i]:=O; 
for j:= 1 step 1 until n do c [i] := c [i] +a [i, j] xb [j] 

end i». 
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The controlled statement of the for-i-clause is compound statement camp, 
which is therefore executed (as a whole) once for every value i = 1,2, 
... , n. Every execution of camp of course includes complete performance 
of the for-j-statement. 

30.1.5. dar k:= 0 step 1 until n do 
kappa: = if k= 0 then true else kappa /\ v [kJ =1= 0» 

tests whether all components of an array v [1 : nJ are nonzero, and only 
if this is so, does kappa obtain the final value true. Note that here 19.4.2 
cannot be applied. 

30.1.6. Other ways of governing the running subscript (which in this 
case is not actually a subscript but a real type variable) are demonstrated 
by the example 

«for z:= xt2, a [0], -1,1, zl2 while Z>10-6 do begin ... end» 
I II I 
single expression while element 

elements 
L..-______ for-clause ______ ---.1 L controlled.J 

statement 

Here z runs through the values xt2, a [OJ, -1, 1, and then 1/2,1/4,1/8, 
etc. until 1/524288 (which is the last one fulfilling the condition Z>1O-6), 
and for everyone of these z the whole compound statement «begin 
... end» is executed. 

30.2. Syntax 

30.2.1. The for-statement has the syntactic form 

«for V:= Fda 5», 

where V represents a simple variable of real or integer type (called the 
controlled variable), F is the so-called for-list, and 5 is an arbitrary state­
men t (the controlled statement). The construction do r V : = Fda» is 
called the for-clause. 

30.2.2. In most applications, e.g. in the examples 30.1.1-4, the for-list 
will have the syntactic form «E1 step E2 until E3 », where the E's denote 
arbitrary arithmetic expressions. It means that the controlled variable 
runs through a strictly linear sequence 

E1 , El +E2 , El +2 xE2 , etc. (until at most E3)' 

30.2.3. In the most general case, however, the for-list can be a con­
struction 

«H, H, ... , H», 

whose entries H, called the for-list elements, are separated by commas 
and may have one of the following syntactic forms: 



«E» 
«El step E2 until Ea» 
'I.E while B) 
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(single expression element), 
(step-until element), 
(while element), 

85 

where in all three cases the E's denote arbitrary arithmetic expressions, 
B represents a Boolean expression, and «while), «untih, and «step) 
are basic symbols of the language. 

30.2.4. Syntactic diagram: 

(Jrilhmefic 
expression 
(ef.19.8) 

expression 
ref. 79. 8.) 

Boole(Jn 

(Jri/limefie 
expression 
(ef. 19.8) 

expression f----------I 
ref. 79.8.) 

for-lisf elemenf for-lisf 

simple vuriuble 
(ef. 1'1-.2) 

0---1 for-c/uuse H sfafemenfref.22.2)f-----l for-sfrIfemenf I 
Fig. 26 

30.3. Semantics 

30.3.1. Static for-statements. A for-statement is called static if the follow­
ing conditions hold: 

a) None of the expressions E, El , E2 , Ea occurring in for-list elements 
depend explicitly or implicitly on the controlled variable V. 
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b) The controlled statement S contains no operations that might 
change the value of V or of any of the expressions E, E1 , E 2 , Es ' 

c) None of the for-list elements is a while element. 

Under these conditions, which hold for most for-statements occurring 
in practice, the execution of a for-statement may be described as follows 
(see, however, 30.3.4 and 30.3.5 below): 

30.3.2. The simplified rule for static for-statements. 
First, an ordered set P of values R1 , R 2 , ••• , Rm (of the same type 

as the controlled variable) is generated. Every for-list element contributes 
to this set as follows (the contributions are lined up in the order in 
which the for-list elements appear) : 

a) A single expression element «E)} contributes the current value 
of the expression E. 

b) A step-until element «E1 step E2 until Es)} contributes the 
linear sequence running from El with increment E2 up to at most 
Es (not exceeding this value in the direction of the increment). How­
ever, if E2 and EI-Es have the same sign, the contribution of the step­
until element is empty. 
Second, the values of the set P are assigned one after the other to 

the controlled variable V, and for every value of V the controlled state­
ment S is executed once. If P is empty, no execution of S takes place, 
i.e. the for-statement is then equivalent to a dummy statement. 

Third, if during one of the executions of the controlled statement a 
jump to a destination label outside (or in front of) the for-statement 
takes place, then the execution of the for-statement is terminated (so­
called termination by a jump). 

Fourth, if the controlled statement has been executed for the last 
value of the set P, or if P is empty, the execution of the for-statement 
terminates in a natural way, which we shall refer to as termination by 
exhaustion of the for-list. 

30.3.3. The dynamic rule. Though not recommended, it is permissible 
that during execution of a for-statement dynamic effects such as changing 
the value of the controlled variable occur, e.g. 

«for x:= 0 step 0.1 until 30.05 do 
begin 

if y< 10 then x:= x+0.02 ; 

end)}, 

or that the controlled variable enters explicitly into the for-list elements, 

e.g. «for z : = 1 step z until 200000 + sqrt (z) do ... )}. 
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In all such cases, and in any case where while elements are involved, 
the precise rule given in 4.6 of the RAR applies. This rule may be 
pictured as follows (with the same meaning of V, S, E, etc. as in 30.2): 

1lI )----0--,------1 The flexl for-lis! element is (/ 
siflgle expressiofl elemenl slep-ualil e/emeal 

No 

No efld >----!ye~s~[;~~~~ 01 lor- V:= ufldefifled 
lis!? 

w 

Fig. 27 

Upon arrival at (0, the execution of the for-statement is terminated 
by exhaustion of the for-list. Besides this, it can also be terminated by a 
jump, as mentioned in 30.3.2 above. 

30.3.4. Value of the controlled variable after termination. The following 
rule applies both to the static as well as to the dynamic case: 

a) If the execution of a for-statement terminates by exhaustion of 
the for-list, the value of the controlled variable is undefined afterwards. 

b) If the execution of a for-statement terminates by a jump, then the 
controlled variable retains the value which it had immediately before 
the jump, provided the destination of the jump is not outside the scope 
of the controlled variable (for scope d. § 42). 

These two cases may be exemplified as follows: 

«for k := 1 step 1 until n do 1 Here the computation continues 
if x [kJ =F y [kJ then goto may; if the vectors x, y agree complete-

z [kJ := 0 ; ly. The value of k is undefined and 
: the statement z[kJ := 0 is incor-
: recto i Continuation if the vectors x, y 

may: Z [kJ : = 1 are different. The value of k is de-
fined and the statement z [kJ : = 1 
is correct. 

)} 
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30.3.5. Jumps into a for-statement. No jumps from outside into a for­
statement are allowed; in other words, the effect of a goto-statement 
located outside the for-statement, but whose destination is within or in 
front of the controlled statement, is undefined. 

30.4. For-statements and conditional statements 

According to the syntax, conditional statements may appear without 
restrictions as controlled statements of for-statements, but according to 
29.2 only the last alternative of an if-else-statement may be a for-state­
ment. Thus 

«for ... do if ... then ... else if ... then ... else ... », 
dor ... do if .. , then ... », 
(<if ... then for ... do ... », 

(<if ... then ... else for ... do ... » 

are all permissible constructions, but 

« if ... then for ... do ... else ... » 

is prohibited by the RAR, namely for the following reasons: 

In the original ALGOL-60 report [6J of 1960 there was no such rule 
restricting the use of for-statements as alternatives of if-else-statements; 
moreover the report did not state whether the example 

« if ... then for ... do if ... then ... else ... » (1 ) 

should be interpreted as an if-statement equivalent to 

(<if ... then begin for ... do if ... then ... else ... end» (2) 
I II I 
for-clause if-else-statement 

I I LI ______ ~--~--~~~--------~ 
if-clause alternative of if-statement 

or as an if-else-statement equivalent to 

(<if ... then begin for ... do if ... then ... end else ... » (3) 
I I I I 
for-clause if-statement 

I II 
if -clause L..-----:'"1_-s-:'"t -a~lt:-e-rn-a-:t-;-i v-e-- LJ 

2-nd 
alternative 

According to the RAR, however, a for-statement cannot be an alter­
native of an if-else-statement (except the last one), and therefore ex­
ample (1) now allows only the unique interpretation (2). 
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30.5. Consequences drawn from the semantic rules 

30.5.1. Influence of roundoff errors. If a controlled variable is of type 
real, then the computer limitations (d. 8.2) with regard to real-type 
variables must be observed. Thus the value of a real-type controlled 
variable will usually deviate by a small amount from the theoretically 
expected course, which may have severe and unexpected consequences 
with respect to the termination of the for-statement. For instance, one 
would expect that the statement (x declared real) 

dor x:= 0 step 0.01 until 0.99 do y:= y+0.01 xf(x,y) ), 

would cause execution of the controlled statement for X= 0, 0.01, 0.02, 
... ,0.98,0.99 and thus integrate - by EULER'S method - the differential 
equation y'=f(x, y) from 0 to 1. However, since the x's are computed 
numerically and are thus inherently inaccurate, it cannot be predicted 
- in fact, it depends on the kind of computer to be used - whether in 
this example 

a) instead of X99= 0.99 a slightly larger value results and therefore 
the last execution occurs with X9S= 0.98 (approximately), or 

b) the value X99 remains slightly below 0.99; in that case the last 
execution occurs as expected with the value X= X99 • 

Of course such ambiguities cannot be tolerated in an ALGOL program 
and must be avoided by programming measures. In the above example 
one could force an unambiguous decision either by choosing the upper 
bound between two meshpoints, e.g. 

«for x:= 0 step 0.01 until 0.995 do y:= y+0.01 xt(x, y) ), 

or by introducing an integer-type controlled variable which counts the 
number of repetitions (Note that an integer-type controlled variable is 
stepped precisely) : 

dor k:= 0 step 1 until 99 do y := y+0.01 xf (kj100, y) ). 

Another example where roundoff errors are rather disturbing, is: 

dor x:= 1.570796326 step 10-12 until 1.570796327 do print (cos (x)) ). 

Indeed, here the increment is so small that on certain computers it gives 
no contribution if added to x; as a consequence, a closed loop will result. 
But even if there is no danger of a closed loop, it is recommended to 
diminish the influence of roundoff errors by rewriting this statement as 

«for k:= 0 step 1 until 1000 do print (cos (1.570796326+kI1012)) ). 
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30.5.2. Empty for-list elements. In certain circumstances a for-list element 
is empty and does not cause an execution of the controlled statement. 
According to the rules given in 30.3 this will occur 

a) if a step-until element is encountered with 

either El >Es and E2 >0, 
or El<Es and E2<0. 

b) if a while element is taken up in which the first evaluation of the 
Boolean expression B already yields the value false. 

If all for-list elements of a for-statement are empty, we speak of an 
empty for-statement. Its for-list is exhausted already before the first 
execution of 5 takes place l . The execution of such an empty for-state­
ment has no other effect than giving the controlled variable the value 
"undefined" . 

30.5.3. Applications. The empty for-list element proves to be a very 
useful concept for many numerical methods. Consider, for instance, the 

n 

summation L '~k . It can be expressed in ALGOL by 
k=l 1 
k*i 

«s :=0; 
for k:= 1 step 1 until i -1, i +1 step 1 until n do 

s:= s+a[k]j(f -k) I). 

Here k runs from 1 through i - 1 and then from i + 1 through n, i.e. 
from 1 through n with the exception of k= i. This is also true for i = 1 
and k= n; indeed, for i = 1 the first for-list element is actually 1 step 1 
until 0 and is therefore empty, while the second for-list element makes 
the summation from 2 to n. 

A further example is the backsubstitution of the Gauss elimination 
process: 

«for k := n step -1 until 1 do 
begin 

zz: for i:= k+1 step 1 until n do x[k]:= x[k]+a[k, i] xx[iJ ; 
x[k]:= -x[kJja[k, k] 

end». 

The inner for-statement (statement zz) is empty for the first execution 
(k= n) of the outer controlled statement; accordingly, the whole example 
causes execution of the following operations: 

1 This means that in ALGOL the jump-out condition of a for-statement is 
checked at the beginning of a loop. Since this is different in FORTRAN, transcrip­
tion from ALGOL to FORTRAN must be done with special consideration of possible 
empty for-list elements. 
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«x[n]:= -x[n]Ja[n, n] ; 

x[n-1]:= x[n-1]+a[n-1,n] xx[n] ; 
x[n-1]:= -x[n-1]Ja[n-1,n-1] ; 

x[n-2]:= x[n-2]+a[n-2,n-1] xx[n-1] ; 
x[n-2]:= x[n-2]+a[n-2,n] xx[n] ; 
x[n-2]:= -x[n-2]Ja[n-2,n-2] ; 

x[1J:= -x[1JJa[1, 1J ;>}. 
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contributed by 
k=n 

}k=n-1 

)k~n-2 
etc. 

30.5.4. Jumps inside a for-statement. While the effect of jumps from 
inside a controlled statement to the outside and vice versa have been 
dealt with in 30.3, it remains to discuss the effect of goto-statements 
whose source and destination are within the same controlled statement. 
Of course this follows directly from the rules given in 30.3, but will be 
demonstrated again by the following example: 

«for m:= - 5 step 2 until 5 do 
ra: begin 

switch abcd:= ra, rb, rc, rd ; 

rb: theta: = exp (m) ; 

goto abcd [i] ; 

rc: end m>}. 

For i = 1, the statement «goto abcd [j] » causes a jump to ra with the 
effect that the controlled statement is re-entered without advancing the 
value of m and without checking for termination. For j = 2, a jump to 
rb occurs, which produces a little loop inside the controlled statement, 
of course also without advancing m. For j= 3, however, a jump to rc 
occurs which terminates the present execution of the controlled statement 
and starts the next execution (with the next value of m), provided the 
for-list is not yet exhausted. 

30.5.5. Applications of the while element. Whereas the step-until element 
serves to repeat the execution of the controlled statement for a strictly 
linear sequence, the while element was designed to allow for arbitrary 
stepping of the controlled variable and other dynamic effects. Consider 
for instance (d. 31.3): 

«for power:= 2,2 xpower while power< 106 do begin ... end ». 

Here the controlled statement is executed exactly 19 times, namely once 
for everyone of the values power = 2, 4, 8, 16, ... , 524288. 
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A further example: The bisection method. 

dor x:= (a+b)/2 while b-a>eps do 
if f(x)< ° then a:= x else b:= n. 

Given an interval a< x< b and a continuous function f (x) with the 
property f (a) < 0, f (b) > 0, this statement computes a new interval (i.e. 
new values a, b) of length at most eps, such that again f(a)<O, f(b)~O. 
The value of eps can be prescribed; however, for too small eps, a closed 
loop may result unless we extend the jump-out condition of the while 
element to (Ib-a>eps!\x=l=a!\x=l=b». 

Thus, undoubtedly, the while element allows a more condensed and 
elegant description of certain computing processes. However, this must 
be paid for by a loss of clarity, and therefore a too extensive use of this 
instrument is not recommended. 

30.6. Efficiency considerations 

For-statements contribute heavily to the total computing time of 
ALGOL programs. This is especially true if for-statements are nested; in 
such cases, obviously the innermost loops (e.g. controlled statement 2 in 
example 30.1.3) contribute heaviest. As a consequence the programmer 
should keep time-consuming operations out of innermost loops whenever 
possible. Often this cannot be achieved, but sometimes a rearrangement 
of the running SUbscripts may help. 

30.6.1. In the summation process 

(IS:= 0; 
for i:= 1 step 1 until n do 

for i:= 1 step 1 until i do 
for k := i step 1 until i do 

s:= s+ f(i, i) xg(j, k)) 

the computing time is roughly on the order of n3j6 times the evaluation 
time for the two function designators f(i, i) and g(j, k). Obviously this 
piece of program becomes more efficient if we take the function de­
signator f(i, i) out of the innermost loop: 

(IS:= 0; 
for i:= 1 step 1 until n do 

for i:= 1 step 1 until i do 
begin 

fii:=f(i,7") ; 
for k:= i step 1 until i do s:= s+fii xg(j, k) 

end i and j». 
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If the evaluation time is much greater for g than for I, this modification 
offers not much of a saving; in this case, it would be better to rearrange 
the hierarchy of the sUbscripts i, j, k: We note that they must meet the 
condition j~k~i but otherwise may run arbitrarily from 1 to n. Hence 

«s:= 0; 
for j:= 1 step 1 until n do 

for k:= j step 1 until n do 
begin 

gjk:= g(j, k) ; 
for i:= k step 1 until n do s:= s+gjk x/(i, j) 

end j and k» 

is a valid rearrangement which reduces the computing time to about 
n3/6 evaluations of I plus n2/2 evaluations of g. 

30.6.2. Similarly, where conditional elements appear in a controlled 
statement, it should be attempted to delegate as much of the checking 
as possible to the outer loops. As an example, 

«for i:= 2 step 1 until n do 
forj:= 1 step 1 until i-1 do 

if a [i - j] > 0 A a [j] < 0 then c [i, j] : = false » 

can be rewritten less elegantly but in general more efficiently as 

«for j:= 1 step 1 until n -1 do 
if a[j]<O then 

for i:= j +1 step 1 until n do 
if a[i-iJ>O then c[i, j]:= false», 

or, by introducing a new variable k=i-j: 

«for k := 1 step 1 until n -1 do 
if a[k]>O then 

for j:= 1 step 1 until n-k do 
if a[i]<O then c[k+j, j]:= false». 

Of course, the saving achieved in the above example depends heavily 
upon the relative frequencies of the fulfilled conditions, a [kJ > 0 and 
a [j] < 0, which are encountered during the process. 

30.6.3. Quite often the efficiency of loops can be improved just by 
choosing other subscripts, i.e. by performing an affine transformation in 
the" subscript space". Consider, for instance, the statement 

«for i : = 1 step 1 until n do 
for j : = i + 1 step 1 until n do p [j - iJ : = a [j - i, iJ ». 
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which, by introducing a new variable k= j - i, can be rewritten as 

«for i:= 1 step 1 until n do 
for k:= 1 step 1 until n-i do P[k]:= a[k, i] ». 

In doing so we have eliminated the evaluation of the subscript expressions 
j - i in the inner loop. Of course this gives only a very slight improvement 
here, but it may serve to indicate what might be done in less trivial 
situations. 

30.6.4. Let us consider example 30.1.4, which computes the components 
c [iJ of the product matrix X vector serially. It would seem that we could 
just as well compute these components also in parallel, namely by 

«for j:= 1 step 1 until n do c [j] := 0 ; 
for j:= 1 step 1 until n do 

for i : = 1 step 1 until n do c [i] : = c [i] + a [i, j] X b [j] ». 

Indeed, the number and kinds of operations involved are the same in 
both cases; all the same, the version given in 30.1.4 is preferable for the 
following reason: If one would like to economize the summation over j 
with a code procedure (d. 47.4), this can be achieved only if this sum­
mation is carried out as an unbroken process: 

«c[i]:=O; 
for j:= 1 step 1 until n do (4) 

c[i]:= c[i]+a[i, fJ xb[j]». 

Indeed, an important part of the economisation is the elimination of the 
repeated storage reference to c [i], which causes a value to be put into 
storage and then read again from storage immediately afterwards. In an 
optimized code procedure for performing the task (4), the partial sums 
would be kept in the accumulator (which would not be possible for 
parallel summation), and only the final sum would be stored as c [iJ. 

30.6.5. Finally, we observe that the statement 

«for j : = 1 step 1 until upper do ... », 

where upper is a function procedure without formal operands, is some­
what uneconomical. Indeed, the test for termination, hence the evalua­
tion of the function designator «upper», is performed for every j. If the 
order of j is irrelevant, we can write 

«for j:= upper step -1 until 1 do ... » 

instead, in which case «upper» is evaluated only once. 
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Miscellaneous Applications 

We have now collected sufficient material so that we can give some­
what more complicated examples selected from various fields of applica­
tions. However, since declarations still have not been treated, these ex­
amples cannot be presented as complete ALGOL programs but rather as 
program fragments, beginning at a point where all declarations have 
been given and all input operations have been performed, and ending 
at a point where the results are ready for output. Furthermore, these 
examples, though correct in principle, are not sufficiently foolproof for 
actual use. In the following this will be understood without further 
mentioning. 

§ 31. Algebraic Problems 

31.1. Gauss elimination 
-+ 

The elementary process of Gauss l for solving A x + b= 0 consists of 
3 parts, namely 1) the elimination proper, which means splitting the 
matrix A into two triangular factors B, C; 2) the forward substitution, 

i.e. the operation 1 : = C-I b, and 3) the backsubstitution, i.e. the operation 
x:=-B-1 1. 

It has been found convenient to organize the elimination in such a 
way that the matrices Band C are stored together as the BC-matrix 
in the same place as A; the latter is therefore overwritten by the process. 
Accordingly, in our program the a [i, k] , while ini tiall y being elements 
of A, are later elements of B or C, depending upon whether i~ k or i>k. 

-+ 
Similarly, all 3 vectors b, 1, x are stored as one and the same array 
s[1 :nJ: at the beginning the sCi] must be given as the constant terms 
bl , ... , bn ofthe system; after the elimination they are the vector 1, and 
at the very end the s[1J, s[2J, ... , s[nJ are the solution Xl' X2 , ... , Xn' 

If step 2) is incorporated into step 1), the following program fragment 
(which, however, does not search for pivots) is obtained: 

«begin 
forj:= 1 step 1 until n-1 do 

for i:= j +1 step 1 until n do 

1 See § 6 in [44J. 
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eUm: 
c1: 

back: 

V. Miscellaneous Applications 

begin 
a [i, i] := - a [i, i]/a [i, i] ; I Elimination of X· from 
for k : = i +1 step 1 until n do i-th equation b/adding 

. a[i,k]:=a[i:k}+a[~,i]xa[f,k]; ~ppropria~emu1tipl~_Of 
s [~] : = s [~J + a [~, 1] X s [1] l-th equation to the ~ tho 

end elim ; 

for k:= n step -1 until 1 do 
begin 

zz: for i:= k + 1 step 1 until n do 
s[kJ:= s[k]+a[k,i] xs[i] ; 

c2: s[k]:= -s[k]/a[k, k] 
end back; 

end>}. 

I Computes Xk= s [kJ from 
the k-th equation of the 
triangular system 
Ex +1"=0. 

In this elimination scheme all a [i, k J with i, k> i are modified in 
the i-th elimination step by adding the product a[i, i] xa[f, kJ. In con­
trast to this, T. BANACHIEWICZ (d. [44J, § 6.2) postpones all operations 
upon a[i, kJ until i=min(i, k) -1, but then adds all products at once 
to a[i, kJ, i.e. performs the operation 

a [i, kJ := a [i, k] + a [i, 1J xa [1, kJ + a [i, 2J xa [2, kJ + ... 
+ a [i, lJ X a [l, k J , 

where l=min (i, k) -1. Moreover, if k< i, a [i, k] is divided by - a [k, kJ 
(in the above program this operation would be performed in the next 
elimination step by statement c1). 

The Banachiewicz scheme requires a complete change in the hierarchy 
of the i-, i- and k-loops: First we let i, k run through all matrix positions, 
and for every i, k all operations upon a [i, k] are performed (the constant 
terms are treated similarly) : 

«begin 
for i:= 2 step 1 until n do 
begin 

for k:= 1 step 1 until n do 
begin 

l : = if i > k then k - 1 else i -1 ; 
t:= a[i, k] ; 

sum: for i:= 1 step 1 untill do 
t:= t+a[i, iJ xa[f, k] ; 

a[i,k]:= if k<ithen -t/a[k,k] else t ; 
end k; 

I operations 
upon a [i, k]. 
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for l' : = 1 step 1 until i -1 do 
s[iJ:= s[iJ +a[i, iJ xs[fJ ; 

end i ; 

} operations 
upon s [i]. 

comment Backsubstitution is the same as before; )}. 
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The Banachiewicz scheme has the advantage that it allows economizing 
the inner product loop (statement sum) with the aid of code procedures 
(d. 47.4); on the other hand, pivot strategy is much more complicated 
than for the original Gauss scheme. 

31.2. Newton's method for algebraic equations 

For given values of the coefficients a [0], a[1], ... , a[n] of a poly-
n 

nomial I (x) = L a [k J xl' and with a given initial value x (preferably close 
k=O 

to a root) the following piece of program attempts to compute a root: 

«begin 
rep: I : = g : = 0 ; 
horn: for k:= n step -1 until 0 do 

begin 
g:=gxx+l; 
1:=/xx+a[kJ 

end; 
delta:= - tJg ; 
x:= x + delta ; 
if abs(delta) > eps then goto rep 

end)}. 

The for-statement labelled horn computes the value I and the derivative g 
of I(x) at x; indeed, for each k we have (after termination of the con­
trolled statement) 

n 

1= L a[fJ xi- k , 
i=k 

as may be verified by induction. 

n 

g = L (i - k) a [iJ X i - k - 1, 

i=k 

We note in passing that the termination criterion of the above piece 
of program by no means meets the requirements of computing practice 
because it is usually impossible to give an a priori value eps such that 
the jump back to rep occurs just as long as this is both necessary and 
meaningful. Indeed, a too small eps tends to cause a closed loop with x 
jumping around the root in an erratic manner, whereas a too big eps 
discontinues the process while it is still capable of improving the ap­
proximation of x. In § 36 we shall develop a program which does not 
exhibit this kind of behavior. 

7 Rutishauser, DeScription of ALGOL 60 
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31.3. The Dandelin-Graeffe method 

The basic idea of this method is to transform a given polynomial f (x) 
into one whose roots are the squares of the former and to repeat this 
process until a polynomial is obtained, the roots of which are so strongly 
separated that they are practically the quotients of consecutive coef­
ficients (e.g. the roots of x"'-1050x3+10sox2-1070x+1020=0 are ap­
proximately 1050, 1030, 10-10, 1O-S0). 

The roots r. of the original equation are then the 2k-th roots of the 
zeros of the last polynomial if k root-squaring steps have been needed 
to obtain it. Complex roots are more difficult to compute with this 
method; only their moduli are obtained easily. One root-squaring step, 
i.e. the step from 

L,ak(-x)k=an[[(x-ri ) to L.bk(-x)k=bnll(x-r~) 
k i k i 

is, as an example, described for n=6 by the following formulae 

bo= a~ 
b1 = a~ - 2aOa2 
b2 = a~ - 2a1 aa + 2aoa", 
b3 = a: - 2a2a", + 2a1 as - 2aOa6 

b", = a! - 2aaa5 + 2a2a6 

b5 = a~ - 2a",a6 

bs = a:. 

(1 ) 

Afterwards the bj are again denoted by a j and the process is repeated. 
It can be stopped as soon as in the computation of bj the other terms 
become negligible with respect to al, and this for all i. If this happens 
for only one i, this is recorded by setting the i-th component of a Boolean 
vector sep to true and means that we could split the equations into 
one with roots r1, r2, ... , rj and one with r1+1' r1+2' ... , rn' If sep [i -1] 
and sep [1] are both true, we can compute the modulus of one root ri 
and reduce the order of the equations by one. These measures are in­
cluded in the following program, but it does not contain measures against 
the very small and very large numbers which usually occur with this 
method and threaten to discontinue the process by overflow of the 
exponentl. 

«for power: = 2, 2 X power while power < 106 do 
begin 
comment follows one root-squaring step as indicated by formulae (1); 

for i := 0 step 1 until n do 
1 A Graeffe-like method which avoids the occurrence of very small and very 

large numbers has been described by GRAU [16J. 
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begin 
bl:= b[j]:= a [i]t2 ; 
sep [f] : = true ; 
s:=-2 ; 
for i:= 1 step 1 until (ifi>n-i then n-i else i) do 
begin 

b [f] : = b [f] + s X a [f - i] X a [f + i] ; 
s:=-s; 
sep [f] : = sep [f] A (bl = b en) 

end i 
end i; 
for k:= 0 step 1 until n do a[k]:= b[k] ; 
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comment follows reduction of equation, if consecutive seP's are true. 
i counts eliminated coefficients; 

i:= 0; 
quat:= 1 ; 

reduce: 
for k:= 1 step 1 until n do 

if sep [k -1] A sep [k] then 
begin 

mad[n-i]:= a[k-1]Ja[k] ; 
quat: = quat X mod [n - iJ ; 
mad[n-i]:= exp(ln(mad[n-i])Jpawer) ; 
i:= i + 1 

end 
else 

ifi=l=O then a[k-iJ:= quatxa[k] ; 
n:=n-i 

end pawen. 

We observe that statement reduce would transform the situation 

into 

n = 6, P = 32, a [O:nJ = (1, 1050>1060>1070>1060>1025, 1), 
sep [0: n] = (true, true, false, true, true, false, true) 

n=4, a[O:n] = (1, 1010, 1020, 10-15, 10-40) 

and produces the moduli of two roots: 

mod [6] = 10-1.5625, mod [5] = 10°.3125• 

31.4. The stability criterion of Routh 

The following compound statement decides, for given coefficients a [k] 
n 

of a polynomial L: akxk, whether all its roots have negative real parts 

° 
7* 
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(in which case it produces the logical value stable = true) or not (in 
which case stable = false). 

If the computation is done by hand, it is recommended (viz. ZUR­

MUEHL [43], p.82/83) to arrange the principal minors of the Hurwitz 
determinant in a Routh-table (e.g. for even n): 

ao a2 a 4 a 6 · ...... an - 2 an 

al aa as a7 · ...... an - I 0 
b2 b4 ba bs · ...... bn 0 
ca Cs c7 c9 · .. cn - I 0 0 
d4 da ds dlO • •• dn 0 0 

etc. 

The present program reflects the staircase shape of the Routh-table, 
but all quantities ak, bk , Ck, dk ••• for the same k are stored as the same 
component a [k] of an arraya. This is possible since e.g. ba is no longer 
needed as soon as da has been computed. 

«begin 
stable: = false; 
for i : = 0 step 1 until n -1 do 
begin 

if a [0] xa[f +1];;'::;0 then goto ex; 
c:=-a[f]la[i+1] ; 
for k:= i +2 step 2 until n -1 do a [k] := a [k] +c xa[k+1] 

end; 
stable: = true; 

ex: 
end». 

§ 32. Interpolation and Numerical Quadrature 

32.1. Neville-Lagrange interpolation 

Let a polynomial of degree n be defined by two vectors a[O:n], 
b [O:n] representing the coordinates of n + 1 points on the curve Y= I(x). 
We have many methods to compute the value of I at x, one of them 
being NEVILLE'S scheme [24], which is based on a relation between all 
polynomials lii(x), where Iii (x) is of order i -i and defined by lii(a [k]) 
=b[k] for k=i,i+1, ... ,i-1,i. 

Indeed, if we introduce the values Yi,i=lii(X) (i, i =1,2, ... , n; 
i;;'::;i), then 

a) Yk,k=b[k] (k=O, 1, ... , n), 
x-a[f] 

b) Yi,j = Yi+l, i + a [n _ a [i] (Yi+l, i - Yi, i-I) (for all i, i; i;;'::; i), 
c) 1= YO,n is the required value I (x). 
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In our program Yi.i will be denoted by Y [iJ since Yi-I.i is no longer 
needed after Yi.i has been computed. 

«begin 
for i: = 0 step 1 until n do Y [fJ : = b [iJ ; 

aa: for k:= 1 step 1 until n do 
bb: for i:= n step -1 until k do 
cc: y[j]:= y[fJ+(x-a[fJ) x(y[fJ-y[j-1J)J(a[fJ-a[i-kJ) ; 

f:=y[nJ 
end». 

If the values Y i . i are arranged in a Neville-table 

Yo.o 
YO.I 

YI.I YO.2 
YI.2 YO.3 

Y2.2 YI.3 
Y2.3 YI.4 : Yo.n=f 

Y3.3 Y2.4 

Yn.n 

then every execution of the for-statement bb (controlled statement of aa) 
causes generation of a new column of this table, namely the one contain­
ing the values y[iJ=Yi-k.i (i=k, k+1, ... , n). At the end, the array 
y[O:nJ contains the top row of the Neville table, and in particular y[nJ 
is the required value f(x). 

Another method to interpolate with the same given data is the 
barycentric formula l , for which we obtain the following program: 

«begin 
weights: 

for i:= 0 step 1 until n do 
begin 

commentprepareweightw[fJ=1Jproduct(overk=l=Jl of (a[iJ-a[kJ) ; 
w[iJ:=1; 
for k:= 0 step 1 until i -1, i+1 step 1 until n do 

w[jJ:= w[iJI(a[iJ -a[kJ) 
end i; 

evaluate: 
s:=t:=O; 
for k := 0 step 1 until n do 

1 W. J. TAYLOR [37J. 



102 v. Miscellaneous Applications 

begin 
comment add one new term to each numerator and denominator of 

barycentric formula; 
d:= x-a[k] ; 
if d=O then d:= 10-30 ; 
s:= s+b[k] xW[k]ld ; 
t:= t+w[k]ld 

end k; 
f: = sIt 

end). 

This program, though considerably longer than that for NEVILLE'S 

method, is more economical if the same polynomial must be evaluated 
frequently or if different polynomials, given at the same abscissae a [k], 
must be interpolated. Indeed, for-statement weights, which is the only 
part which requires a computing time on the order of O(n2), depends 
neither upon the b[k] nor upon x and therefore can be executed once 
and for all as long as the a [k] do not change. All later interpolations for 
the same a's can be done by a jump to evaluate and require only a 
computing time of order 0 (n). This compares favorably to NEVILLE'S 

method, which always requires a computing time on the order of 0 (n2). 
We note in passing that for large n the multiplication of the many 

small differences a [j] - a [k] may cause an underflow of the exponent; 
this may require special countermeasures. 

32.2. Hermite interpolation with equidistant abscissae 

The virtues of Hermite interpolation (function given not only by 
values but also by first derivatives at the mesh-points) are too well 
known to require further discussion. Let Yk and Y~ be the given values 
of f(x) and f'(x) at xk=xO+kxh (k=O, 1, ... , n). Then the value of 
the Hermite interpolation polynomial H(x) of order 2n+ 1 at x can be 
expressed in our specialisation by the following barycentric type of 
formula l : 

(1 ) 

where 

Ak = (~) 2, Z= (x - xo)/h, 

Bk = 2 A,. (IPn-" - IPk) , 

1 See KUNTZMANN [23]. p. 169ff. 
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with 
1 1 1 

9'k=1+ 2 + 3 "· +T· 

This leads to the following program (yl [k] representing y;): 

«begin 
phi [0] := 0 ; 
for k:= 1 step 1 until n do Phi[k]:= Phi[k-1]+1/k ; 
s:=t:=O; 
w:=1 ; 
z:= (x - xO)/h ; 
for k:= 0 step 1 until n do 
begin 
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if z-k=O then begin bigh:= y[k] ; goto ex end; 
comment add one further term to both numerator s and denominator t 

of barycentric formula (i) ; 
r:= 1/{z-k)t2- 2 X (Phi[k] - phi[n- k])/{z-k) ; 
s:= s+wx{rxy[k]+hxyl[k]/{z-k)) ; 
t:= t+wxr ; 
w:=wx(n-k)t2/(k+1)t2 ; 

end k; 
bigh:= sit; 

ex: 
end». 

32.3. Newton interpolation in an equidistant table 

Let a [0: bignJ be an array representing an extended table of a func­
tion I(x), such that a[kJ is the value of I at xk=xO+kxh, where xO 
and h are also given. It would be uneconomical and numerically unstable 
to evaluate the full interpolation polynomial of order bign for a given x. 
Instead we compute I (x) by Newton-Gregory interpolation from the 
values of I at eight of the abscissae Xi' four on either side of the given x. 
This implies 1) selection of proper abscissae Xk through Xk+7' i.e. com­
putation of k (statement set). 2) building the difference table for the 
values a[k] through a[k+7] (statement dil). and 3) evaluation of the 
Newton-Gregory formula (statement eva): 

«begin 
t:= (x- xO)/h ; 

set: k:= ift<3.5 then 0 else ift>bign-3.5 then 
bign - 7 else entier (t) - 3 ; 

t:=t-k; 
fori:=ostep1 until7doy[i]:=a[k+i]; 
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dit: for i : = 1 step 1 until 7 do 
fori:= 7 step -1 until i doy[i] :=y[i]-y[i-1] ; 

f:= y [7] ; 
eva: for i: = 6 step -1 until 0 do t: = t X (t - i)J(i+ 1) + y [i] 
end». 

32.4. Romberg Quadrature 
b 

The Romberg method for computing J t (x) dx has become known 
a 

through a number of recent papersl. Its main feature is the T-table 

T.(O) 
0 

y(O) 
1 

y(l) 
0 

y(O) 
2 

y(l) 
1 

T.(O) 
3 

T.(2) 
0 

T.(l) 
2 

which in fact is a Neville scheme (for x=o) of a function T(x) given by 
the values T(4-k) =TJk) (= trapezoidal values for subdivision of the 
quadrature interval into 2k equal parts). The Neville formula reduces 
in this case to 

which together with the evaluation of the TJk) yields the following 
program (it is assumed that t (x) is a function designator which produces 
the value of the integrand t at x): 

«begin 
n:=1 ; 
t[O]:= (b-a)J2x(t(a)+t(b)) ; 
for k:= 1 step 1 until m do 
begin 

n:=2Xn; 
h:= (b-a)Jn ; 
P:=4 ; 
s :=0; 

accu: for i : = 1 step 2 until n do 
s:= s + t(a+ixh) ; 

t[k] := t[k-1]J2+s xh ; 

1 See for instance BAUER, RUTISHAUSER, STIEFEL [8J. 

l Evaluation of 
trapezoidal rule. 
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for j : = k - 1 step - 1 until 0 do 
begin 

t[j]:= (pxt[j+1]-t[j])J(P-1); 
P:=4XP 

end j 
end k; 
int: =t [0] 

end)} 

I Romberg step for 
computing new anti­
diagonal of T-table. 

The structure of this program is slightly different from the Neville 
program given in 32.1. Indeed, here it is natural to compute the 
TriO), TJl), TJ2), ... etc. in this order and then to compute immediately 
after every TJk) the values Tik- 1), TJk-2), ... , T~O), where T~iJ..i appears 
in our program as t[jJ. With the ALGOL notations the T-table will there­
fore appear as follows: 

t [0] 

t [1 J 

t [2J 

t [3J 

._____computed for k = 1, 
teO] . ~computed for k=2, 

t[OJ ......_____computed for k= 3, etc. 
t[iJ teo] 

t[1] t[oJ 
t[2] t [1] 

Unfortunately this program has - like most other programs for 
ROMBERG'S method published heretofore - very poor properties with 
respect to accumulation of roundoff errors. To improve this situation, 
we could replace the for-statement accu, which is responsible for this 
imperfection, with the following compound statement, which avoids too 
frequent additions of small terms to a large partial sum. Indeed, state­
ment fO accumulates at most 16 terms of the trapezoidal sum, while 
statement f 1 collects the contributions of at most 16 such presummations, 
and finally statement f2 accumulates all terms produced by statement fl. 

«begin 
nO: = if n > 32 then 32 else n ; 
nl:= if n> 512 then 512 else n ; 

f2: for k2:= 1 step 512 until n do 
begin 

sl:=O; 

fl: for kl:= k2 step 32 until k2+nl-1 do 
begin 

sO:= 0; 
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10: for kO:= kl step 2 until kl+nO-1 do 
sO:= sO+/(a+hxkO) ; 

sl:= sO+sl 
end kl ; 
s:= s+sl 

end k2 ; 

end». 

§ 33. Numerical Integration of Differential Equations 

33.1. Runge-Kutta method, Nystroem modification 

An advantageous method for integrating ordinary differential equa­
tions numerically is the Runge-Kutta method [17]. The following piece 
of program corresponds. to a modification given by NYSTROEM [25J which 
integrates directly differential equations of second order: 

Let y" = 1 (x, y, y') be the differential equation, x, y, yl the given 
initial values x, y (x) and y'(x), h the length of the integration step and 
p the number of such steps to be performed. It is assumed that I(x, y, yl) 
is a function designator which produces the value of the second derivative 
(y2 in our program) for given argument x, function value y and deriv­
ative yl. 

Like the classic Runge-Kutta method, the Nystroem algorithm also 
uses three auxiliary points A, B, C within the integration step from Xk 

to xkH . The values y, y', y" at those places are denoted by ya, yb, yc, 
yal, ybl, yel, ya2, yb2, yc2, whereas the corresponding values at the 
meshpoints proper are denoted by y, yl, y2. 

y-z[k} 
Ya 
Yb 

X/r +hlt 

Fig. 28 
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«for k : = 1 step 1 until p do 
begin 

y2 := I(x, y, yl) ; 
x:= x+hj2; 

ya :=y+hxylj2+ht2xy2j8; 
yal:=yl+hxy2j2 ; 
ya2 : = I (x, ya, yal) ; 
yb :=ya; 
ybl:=yl+hxya2j2 ; 
yb2:= I(x, yb, ybl) ; 

x:= x+hj2 ; 
ye :=y+hxyl+ht2xyb2j2; 
yc1 :=yl+hxyb2; 
ye2 : = I(x, ye, yc1) ; 
z[k] :=y:=y+hxyl+ht2x(y2+ya2+yb2)j6; 
zl[k]:=yl:=yl+ 

+hx(y2+2xya2+2xyb2+ye2)j6 ; 

1 Auxiliary 
point A. 

1 Auxiliary 
point B. 

1 Auxiliary 
point C. 

1 Completion of 
integration 
step. 

After termination the values of y, y' at all meshpoints x+k xh 
(k = 1,2, ... , p) are available as components of the arrays z [1 :p] and 
zl[1 :P]. 

33.2. The Adams-Bashforth method 

The problem is to integrate y' = I (x, y) by the Adams extrapolation 
method of order q (open q+ 1 point formula) over r steps of length h, 
whereby the initial values xo' y (xo) = Yo are given. First we must inte­
grate over q-1 steps by some other method (e.g. RUNGE-KuTTA) in 
order to obtain the necessary starting values xq_1 , yq-l' y;-l> y;-2, 
... , y~, y~ (in fact, we shall assume that these values are given at the 
beginning as x,y,z[q-1],z[q-2], ... ,z[1],z[O]). Then we can con­
tinue with the recursion formula 

In this formula the c's are fixed for given q and can be generated 
prior to the integration with the aid of the generating function 

00 

L bk t" = - t j ( ( 1- t) X In ( 1 - t)) , 
k=O 

and 
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The recursion formula (1) is easily programmed for a computer; how­
ever, the storage of the derivatives Y: (i=q, q+1, ... , r), which are 
produced by the process and for which at any time the last q must be 
available, presents a problem: 

If the Y~-i are stored as z[q-j], as (1) would suggest, we would 
have to shift them by one storage place whenever k is increased; this 
saves storage but wastes time. If the Y; are stored as z [i] for all i, we 
need not shift them but hereby waste storage space in a way which 
becomes prohibitive if a system of differential equations is to be inte­
grated by the same method. We therefore decide to store the Y~-i 
cyclically, namely Y~-i as z[i], where O~i<q and i=.k-j (modq). 
There is a little inconvenience with this scheme insofar as the summation 
loop for evaluating (1) is split into two loops, but even this can be 
avoided at the expense of storing the coefficients Ci twice, namely Cj as 
c[i] and at the same time as c[i+q] (i=O, 1, ... , q-1). This is shown 
by the following confrontation of ordinary versus ALGOL notation for 
the factors appearing in the terms of (1) (Note that p = k - 1 (mod q)) : 

ordi- {Cp cP_ 1 ••• c1 Co I cq- 1 ••• cP+2 cp+t 
" I I I , I 

nary Yk-P-l Yk-P ... Yk-2 Yk-l Yk-q ... Yk-p-3 Yk-P-2 

A {c[P+q] c[P+q-1] .. c[q+1] c[q] I c[q-1] . c[P+2] c[p+1] 
LGOL z[o] z[1] ... z[P-1] z[P] z[P+1]. z[q-2] z[q-1] 

Applying these ideas to a system of differential equations, which we 
assume to be defined by a procedure equ such that a call <<equ (x, y, n) 

res: (f)} produces the derivatives z[k]= L y[k] (d. 44.7.3), we obtain 

the following piece of program: 

«begin 
p:=q-1 ; 
for k:= q step 1 until r do 
begin 

comment here p congruent k -1 (mod q) ; 
for l:= 1 step 1 until n do 
begin 

comment Evaluation of Adams-Bashforth formula; 
s:=O; 
for j:= 0 step 1 until q-1 do s:= s+c [p+q-iJ xz[j,l] ; 
YY [k, 1] : = Y [l] : = Y [l] + h X s ; 

end l; 
x:=x+h; 
p:= ifp=q-1 then 0 elsep+1 ; 
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com ment Compute derivatives I [l] of Y [l] at x and insert these into 
the array z ; 
equ (x, y, n) res: (I) ; 

for l:= 1 step 1 until n do z[p, lJ := l[lJ 
end k 

end)}. 

After termination, the array yy [q: r, 1 : n] contains the components of 
the solution at all mesh points xq , xq+1' •.. , X,. 

33.3. Laplace's equation 

Let L be a domain whose boundary lies entirely on grid lines of a 
square grid (with mesh size hxh). We attempt to solve 

iJu=/(x,y) inL, 

u=O on boundary. 

Such a domain can be described in terms of the intersections of all 
vertical grid-lines with the domain. Indeed, if we define the interior grid 
points .F} i for every fixed i by the inequalities 

aI -:2,i-:2,a2 

aa-:2,i-:2,a4 

am - I -:2,i-:2,am (m even), 

and represent the ap for every i as a vector v;=(aI , a2 , ••• , am), the 
domain is defined. For <;:onvenience the number m is added as the 
zero-th component ao to this vector. 

However, this "description" of a domain usually takes an undue 
amount of storage space, which can be reduced considerably if identical 
vectors v: are listed only once, but a - 2-nd and a -1-st component 
are added with the meaning that v: is valid for those i for which 
a_2 -:2, i-:2, a-I· The whole domain is then defined by an integer array 
a [1 : n, - 2: mmax], every line of which pertains to a group of vertical 
grid lines which have identical intersections with the interior of L. 

As an example the domain (see Fig. 29) is defined by the array 
(n=6, mmax=6) 

1 
2 

3 
4 
5 
6 

-2 -1 0 1 2 3 4 5 6 

5 6 2 5 17 0 0 0 0 
7 12 4 5 17 39 45 0 0 

13 13 4 5 17 32 45 0 0 
14 18 6 5 9 15 17 32 45 
19 28 4 5 9 15 45 0 0 
29 33 2 5 45 0 0 0 0 
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j P2222/1 Exlerior 

50 

Fig. 29 

Likewise a square domain subdivided into a grid of 10 X 10 smaller 
squares would appear as the degenerate array a [1 : 1, - 2: 2J : 

9 2 1 

To solve now the Dirichlet problem, e.g. by overrelaxation, we assume 
that the solution at grid point i, j is denoted by x [i, i] and t (x, y) at 
i, i by t [i, i] : 

«begin 
for i : = 0 step 1 until imax do 

for i:= 0 step 1 until jmax do xCi, n := 0 ; 

for k:= 1 step 1 until kmax do 
begin 

rr:= 0; 

step: for e : = 1 step 1 until n do 
fori:=a[e, -2] step 1 until aCe, -1] do 

for p : = 2 step 2 until a [e, 0] do 
for j : = a [e, p -1] step 1 until a [e, p] do 
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begin 
res:= 4 xX[i, iJ - xCi, i -1J - xCi, i+1J 

- x[i+ 1, iJ - x [i-1, iJ -ht2 xt[i, iJ 
rr:= rr+rest2 ; 
x [i, iJ : = x [i, iJ - omega xres/4 

end c, i,p, i ; 
if rr < epst2 then goto out 

end k; 
out: 

end». 

111 

Statement step, which describes essentially one single overrelaxation 
step, is a fourfold loop: c counts the groups of vertical grid lines having 
identical intersections with L, i counts the vertical lines within the 
groups, p counts the sections which L cuts out of one vertical line in 
each group, and i counts the grid points within these sections. 

§ 34. Least Square Problems 

34.1. Orthogonalisation 

The solution of more than m linear equations with m unknowns, 

m 

ri= L aikxk+bi= 0 (i=1, 2, ... , n>m) 
k=1 

in the sense of Gauss is characterized by 

n ,,2 . 
L.. r i = mIn. 
i=1 

and is found most conveniently by orthogonalisation of the columns of 
the matrix A = (aik)' The Schmidt orthogonalisation process requires 
strict orthogonality of the resulting vectors, but this is not guaranteed 
automatically if the process is carried out numerically. Indeed, if the 
orthogonalisation step 

k-l 
V~old) -+ vknew) = Vko1d) - L rk iV/new) 

;=1 
(1 ) 

(see also statement orth in the program below) produces a vector vlnew) 

which is much shorter than the given v was, then the roundoff errors may 
have the effect that 15k is oblique to some of the vectors VI' V;, ... , 15k - I , 
To avoid this, the orthogonalisation is repeated (statement rep) whenever 
the reduction (1) reduces the length VU of 15k to less than one tenth 1 of 

1 The program will fail if the length of the vector V; is reduced to zero. 



112 V. Miscellaneous Applications 

its original length, but the r [i, k] produced by the repetition have no 
further meaning: 

« begin 
for k:= 1 step 1 until m do 
begin 

t:=tt:=O; 
for i:= 1 step 1 until n do t:= t+a[i, kJt2 ; 

orth: fori:=1 step 1 until k-1 do 
begin 

s:= 0; 
for i:= 1 step 1 until n do s:= s+a[i, i] xa[i, k] ; 
if tt = 0 then r [i, k] : = s ; 
for i: = 1 step 1 until n do a [i, k] : = a [i, k] - s X a [i, i] ; 

end i ; 
tt:= 0; 

Uh: fori:=1 step 1 until n dott:=tt+a[i,k]t2; 
if tt < 0.01 X t then 

rep: begin 
t:= tt ; 
goto orth 

end if; 
r[k, k] := sqrt(tt) ; 

norm: for i: = 1 step 1 until n do a [i, k] : = a [i, k ]/r [k, kJ 
end k 

end». 

The result of this algorithm is a new n X m matrix A (new), which is 
stored in place of the given matrix A, and an upper triangular matrix 
R=(rik) such that A(new)xR equals the given matrixA. 

~ ~ 

To solve now the problem IA x + bl = Min. , we add b to A as the 
m+1-th column and apply the above program to the extended n X (m+1) 
matrix (to this effect we must use the program with m+1 in place of m). 
Then the components of x are the solution to the linear system 

ru Xl + r12 Xz + ... + rl,m xm + rl,m+1 = 0 
r2Z xZ + ": +r2,mXm:+-rz,m+1 =0 

->-
whereas r m+1, m+1 is the attained minimal value of IA x + bl. 



§ 34. Least Square Problems 113 

34.2. Generation of orthogonal polynomials 

Following G. FORSYTHE [14J we can generate polynomials P,. (x) which 
are orthogonal with respect to a given weight-function w (x), i.e. such that 

b 

J P;(x) ~(x) w (x) dx = bii , 
a 

by the tri-term recurrence relation 

bkP,. (x) = (x - ak) P"-l (x) - bk- 1 11-2 (x), 
where 

b 

ak = J xw (x) Pk2_1 (x) dx, 
a 

and bk is determined such that 
b 

J W(X)p"2(X) dx = 1. 
a 

The program given below assumes that the orthogonality interval is 
(0, 1) and that w (x) is given in tabular form as a vector w [0: n J where 

1 2~ w (jln) for j = 0, n 
w[jJ = 

~ w(jln) for j=t=O,n. 

It computes all integrals by the trapezoidal rule and produces also the 
polynomials P,. (x) in tabular form: 

«begin 
s:= 0; 
forj:=Ostep1 untilndos:=s+w[jJ; 
s:= 1/sqrt(s) ; 
for j: = ° step 1 until n do p [0, jJ : = s ; 
for k:= 1 step 1 until m do 
begin 

comment Here P"-l (x) and for k =t= 1 also 11-2 (x) are available and 
normalized ; 

s:= 0; 
for j:= ° step 1 until n do s:= s+j xp [k -1, jJt2 xw [jJ ; 
a[k] := sin; 

comment Generate Polynomial P,,(x) ; 
if k= 1 then for j: = ° step 1 until n do 

P[k,j]:= (jln-a[k])xp[k-1,j] ; 
if k =l= 1 then for j : = ° step 1 until n do 

p [k,j] : = (jln- a [k]) xP[k-1,j] - b[k-1] xP[k-2, j]; 
s:= 0; 

8 Rutishauser, Description of ALGOL 60 
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comment Normalize J1(x) ; 
for j:= ° step 1 until n do s:= s+w[fJ xP[k, iJtz ; 
b [k J : = sqrt (s) ; 
for f:= ° step 1 until n do P[k, fJ := P [k, fJ/b[kJ 

end k ; 
end». 

At the end, the orthogonal polynomials J1(x) (k=O, 1, ... , m) are 
available in tabular form as the rows of the matrix p, p [k, fJ being 
approximately the value of J1 (x) at the mesh point x = i/n. 

To use these polynomials for curve fitting, i.e. to approximate f(x) 
m 

by L CkP" (x) such that 
o 

J w(x) (f(X) - ~ Ck J1 (x) rdX = Min. , 
o 0 

the ck can be determined as follows (It is assumed that f (x) is a function 
designator which computes the value of f at x): 

«for k : = ° step 1 until m do 
begin 

s:=o ; 
forj:=Ostep1 until n do s:= s+w[iJ xf(f/n) xP[k,fJ ; 
c[kJ:= s 

end». 

34.3. Chebychev series development 

Let f (x) be a function defined on the interval (-1, 1). We require 
a least-square approximation 

II-I 

f(x) = ~o+L>kT,.(X), 
k~1 

(2) 

where Tk(x) = cos (k X arccos (x)), with w(x) =1/sqrt(1-xt2). 
To obtain the ck , we compute 

where 

2 II-I {i +.l. } I 4") = - L!(xi) cos __ 2 kn , 
n . 0 n 

,~ k = 0, 1, ... , n - 1 . 

{ k+.l. } xk=cos ~n 

(3) 

These 4") are computed for increasing values of n until they settle 
down to limits 

Ck = lim 4"), 
II~OO 

which are the coefficients occurring in (2). 
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Since the values cos {i ~ t k n} are used over and over again in the 

process, they are not computed using the standard function cos (x); 
instead we generate for every new n a table consisting of the values 

dp=cos (-f- n) (p=O, 1, 2, ... , 4n). Then we can read from this table 

the valuesn xk =d2k +1 and cos {i~t kn}=dk (2 i -f-l)' where of course 

k (2j + 1) must be taken modulo 4n. 

If we let n run through the values 2,4,8, 16, ... , then we can compute 
the d's for 2n recursively from those for n by virtue of the half-argument 
formulae of the cosine. On the whole we obtain the program below. 
Termination occurs either by a jump to the label noncon (supposed to 
be somewhere outside this piece of program), if nmax was insufficient 
to yield sufficiently close agreement between the 4n/2) and 4n), or other­
wise by an exit through « end». In the latter case the agreement may 
still be accidental, and in this respect this piece of program is not quite 
foolproof. 

«begin 
for k:= 0 step 1 until nmax do c[k]:= 0 ; 

comment Compute initial values of the d[k] (corresponding to n=1) ; 
d[O]:= d[4]:= 1 ; 
d[1] := d[3]:= 0 ; 
d[2]:= -1 ; 

for n:= 2, 2 xn while n~nmax do 
begin 

comment Start computation of all c [k] for one n. Compute first new 
values d[k] interlaced between the old ones; 

for j:= 2 xn step -1 until 1 do d[2 xj] := d[j] ; 
dl:=sqrt(2+2xd[2]) ; 
for j:= 1 step2 until 4 xn-1dod[i] : = (d[j+1] +d[j-1])/dl ; 
t:= 0; 

for j:=Ostep1 untiln-1 dofct[j]:=f(d[2xj+1]); 
for k : = 0 step 1 until n - 1 do 
begin 

comment Start summation (3) for computing c[k] ; 
s:=O; 

s· 

jk:=k; 
for i:= 0 step 1 until n-1 do 
begin 
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comment ik is congruent k X (2 xi + 1) modulo 4 X n ; 
s:= s+d[ikJ xlct[iJ ; 
ik:= ik+2 xk ; 
ifik>4xn then ik:= ik-4xn 

end i ; 
c1:=2Xs/n; 
t:=t+abs(c1-c[kJ) ; 
c[kJ:=c1; 

end k; 
comment t is sum of absolute differences between old and new c [k]'s ; 

if t < eps then goto limit; 
end n; 
goto noncon ; 

limit: 
end>}. 

§ 35. Computations Related to Continued Fractions 

35.1. Introduction 
Continued fractions are constructions of the form 

(1 ) 

where A and gk are given functions of the subscript k. In analysis this 
concept is extended to m = 00 and thus successfully used to represent 
various transcendental functions 1. As an example, if 11 = 1, A = k - 1 
for k> 1, gk=Z for all k, the (infinite) continued fraction converges for 
all positive real Z to 00 

rf'/2 J e-t'/2 d t, 
II 

whereas the corresponding power series 
1 1 3 3X5 3X5X7 
z-za+7---z7+~z9~- + ... 

is an asymptotic expansion, diverging for all z. Likewise in many other 
instances divergent or badly convergent power series can be transformed 
into convergent continued fractions. 

In numerical practice the continued fractions must of course always 
be truncated to finite length and then have the form (1). If the coef­
ficients I, g are given as two arrays, (1) can be evaluated by backward 
recurrence, which bases on the fact that the relation s(k)=A/(gk+S(Hl)) 
holds between the values 

S(k) = 1JJ + fk+t I + ... + l!!J (k 1 2 ) I Ck I CHI I Cm =" ... , m . 
-----

1 See H. S. WALL [39J. 
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Introducing s(m+l) = 0 and omitting the superscripts of s, we obtain the 
following piece of program which computes the value of (1) as cf: 

«begin 
s:=O; 
for k:= m step -1 until 1 do s:= f[k]f(s+g[k]) ; 
cf:= s 

end». 

35.2. Evaluation by the forward recurrence relation 

The above method of evaluation is usually not appropriate if we are 
concerned with truncated infinite continued fractions because then m is 
not known a priori but rather depends upon the speed of convergence. 
Moreover, it is in this case also uneconomical to assume the A, gk as 
being given as components of two arrays. Therefore the following modi­
fications are recommended: First, the A, gk are computed for every k 
by function designators «ff(k) I), «gg(k) I). Second, we use the forward 
recurrence formulae 1 : 

Bo=1, Ao=O, Al =fl' Bl =gl' 

A" = gkAk-l + AAk- 2, Bk = gk Bk- 1 + fk Bk- 2, k = 2,3, ... , ad info (2) 

with which the value of the (infinite) continued fraction is obtained as 
lim (AkfBk) and can therefore be approximated to any desired accuracy. 
k->oo 

However, there is some problem in storing the Ak , Bk : Since A" 
depends on A"_1 and A"_2' we cannot discard Ak- 1 after computation 
of Ak, but we can overwrite Ak- 2 with Ak (and likewise for the B's). 
This suggests the use of two positions for the Ak , say a[1] for even, 
a [- 1 J for odd k, and b [1], b [ -1 J for B. Thus with the termination 

criterion I ~: - ~:=: \ < eps being checked every r-th step, the follow­

ing program emerges (compare also 36.4): 

«begin 
p:=q:=1 ; 
a[1J:=O; b[1]:=1; 
a [- 1 J : = ff (1); b [ - 1 J : = gg (1) ; 
for k:= 2 step 1 until kmax do 
begin 

f:=ff(k); g:=gg(k); 
a[pJ :=gxa[-p]+fxa[pJ ; 
b[PJ :=gxb[-PJ+fxb[p] ; 
if k=q xr then 

-----
1 See H. S. WALL [39J, § 1. 
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begin 
ct:=a[p]lb[p] ; 
cg:=a[-p]lb[-P] ; 
if abs (ct - cg) < eps then goto ex ; 
q:=q+1 

end it; 
P:=-P; 

end k; 
ex: 
end). 

35.3. Transformation of a power series into a continued fraction 
00 

To "nearly every" power series z: CkXk there exists a corresponding 
continued fraction k=O 

col a1xI a2 xl 
rt--I1--I-1--··· 

which is uniquely defined by the property that for every m the rational 
function 

agrees up to the xm-term with the given power series. 
One method for computing the coefficients ak from given Ck is the 

quotient-difference algorithm [28J, which can be described as follows: 
From the given coefficients Ck we compute 

the quotients 

the differences 

the quotients 

the differences 

q~) = ck+1/ Ck , 

eik) = qik+1) - qik) , 

q~k) = (eik+1) / eik)) X qik+1), 

e~k) = (q~k+1) _ q~k)) + eik+l) etc. , 

generally {e)k) = q)k+1) _ q~k) + ej~i1) 
(putting e~+l) =0) q}~l = (e}k+1)je}k)) X q}k+ 1). 

Then the coefficients ak of the corresponding continued fraction are 

(4) 

The rules (4) are transformed into an easily memorizable form (so­
called rhombus rules, d. E. STIEFEL [35J) if we arrange the q's and e's 
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in a quotient-difference table: 

C1 
e(O) 

1 
qil) q~O) 

C2 
e(l) 

1 
e(O) 

2 

qi2) q~l) q~O) 

C3 
e(2) 

1 
e(l) 

2 

qi3) q~2) 

In this two-dimensional array the c's in the leftmost column are 
given and the q~O), 4°) in the top diagonal row are sought. They can be 
computed by systematic application of the rhombus rules from left to 
right. To obtain an economical program, we must find an arrangement 
which does not require all these elements to be stored at the same time, 
but if possible only one row or column at once. To do this, let us 
first rename the entries of the qd-table as follows: 

Co 
a(l) 

1 

C1 
a(2) 

2 
a(2) 

3 
a(3) 

a 
C2 

a(3) 
4 

a(4) 
4 

a(3) 
5 

a(4) 
5 

a(5) 
5 

Ca a(4) 
6 

a(5) 
6 

a(4) 
7 

a(5) 
7 

For every new Ck given, we compute one new antidiagonal consisting of 
the values a~kLl' a~kL2' ••• , a~k) (in this order), where a~) is computed 
from a(k-l) a(k-l) a(k) according to (4) We observe that a(k-l) is no P 'P-l' P+l . P 
longer used after a~) has been computed; therefore the former can be 
overwritten by the latter, which means that the quantities a~) can be 
stored for all k as the same array component a [PJ. In the following piece 
of program the rhombus rules are distinguished by a Boolean variable q 
(q = true refers to the Q-rule, q = false to the E-rule). 

«for k : = 1 step 1 until m do 
begin 

a [2 X k - 1] : = C [kJ I C [k - 1] ; 
a[2xk-2]:= 0 ; 
q:= true; 
for j : = 2 X k - 2 step -1 until k do 
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begin 

comment rhombus rules; 
a[i]:= if q then a[j+1]+a[i] -a[i -1] 

elsea[j+1]xa[j]ja[i-1] ; 
q:= ---.q 

end j; 
end h. 

After execution of this program, the ak = a [k] (k = 1, 2, ... , n) are 
the coefficients of the finite continued fraction (3). In other words, the 
tZt ••• am are the first m coefficients of the infinite continued fraction which 

00 

corresponds to the power series L CkXk. The coefficients am+!' ... , a2m- 1 
k=O 

on the other hand are not further used. 

35.4. The epsilon algorithm 1 

If we intend to compute the value of (3) for many values of x, then 
it is appropriate to compute first the coefficients a [1 : m] and then 
evaluate for every x the finite continued fraction (3). However, if we 
want to evaluate 1m (x) just for one x, then it is computed more economi­
cally by the epsilon algorithm. This is a method which derives from a 
given sequence eps&O), eps&l), epsb2), ... , a two-dimensional array epsik), 
usually arranged as 

eps&O) 
epsiO) 

eps&l) eps~O) 

ePsi1) eps~O) 

eps&2) eps~l) 

ePsi2) eps~l) 

eps&3) eps~2) 

According to P. WYNN [41], the following is true: If lim eps&k) exists, 
ko4oo 

then usually also the sequence eps~oJ, eps~), eps~2), ... converges for every j 
to the same limit, and so does the diagonal sequence eps&O), eps~O), epsiO), 
eps~O), ... Usually the derived sequences converge faster than the given 
one, and sometimes they converge even if the given sequence diverges. 

To adapt the method for practical requirements, we condense the 
epsilon array to those columns with even subscripts since only those 

t P. WYNN [41]. 
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approximate the limit of the given sequence: 

eps&O) 

epsh1) eps~O) 

epsh2) eps~) eps~O) 

eps&4) eps~2) epsi1) eps~O) 

For the condensed epsilon-table we have also condensed recurrence rela­
tions (P. WYNN [42J): 

__ 1_ + _1 ___ 1_ + _1_ 
C-W C-E-C-S C-N' (5) 

where C, N, W, 5, E are any five elements of the condensed array stand­
ing in the relative positions 

N 
WeE 

5 

Relation (5) is also true if C is an element of the leftmost column, 
provided we set W = 00 (we shall use 1030 instead). With this extension, 
(5) is sufficient for building up the condensed array from the given 
values eps~) simply by solving the relation for E and letting C run 
through all entries except the top diagonal of the array. 

However, also here we must avoid having to retain all elements of 
the array simultaneously in storage. To achieve this, we rename the 
condensed array as follows: 

eps [0] 
eps [1J 
eps[2] 
eps[3] 
eps [4] 
eps [5J 

and assume that at a given moment the last two elements of every 
column (the elements below the dotted line) are available. Obviously, 
as soon as the next element eps[kJ (here k=6) of the first column is 
given, the recursion rule (5) can be applied and a new element can be 
computed in all other columns; moreover, a new column is started if 
k is even. At the same time we can overwrite the elements immediately 
below the dotted line, which completes the step from k - 1 to k. 

However, one difficulty remains: the new elements are computed 
before their respective storage positions become available. Indeed, if 
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e.g. the next element eps [2J in the third column is computed, the old 
eps [2J is still needed for computing a new eps [OJ in the fourth column, 
but eps [4J can be overwritten. For this reason we store the new elements 
generally as eps [f + 2J instead of eps [iJ and shift them back at the end 
of every step. This we do also for the given eps[kJ. All in all we obtain 
the following piece of program: 

«begin 
for k:= kmax step -1 until 0 do eps[k+2J:= eps[kJ ; 
H:=1 ; 
for k:= 0 step 1 until kmax do 
begin 

ii:= 1-jf; 
comment At this point ii is congruent k modulo 2. ii serves to distin­

guish cycles which produce epsilons with even subscripts 
from cycles in which epsilons with odd subscripts are com­
puted; 

eps[kJ:= 1030 ; 
for i:= k-2 step - 2 until 0 do eps[i+2J := eps[f+ 1J-

1/(1/(eps[f+1J -eps[fJ)+1/(eps[f+1J -eps[i+4J)-
1/(eps[i+1J -eps[f+2J)) ; 

for i: = ii step 2 until k do eps [iJ : = eps [i + 2J 
end k 

end). 

After termination eps [m will (usually) be the best approximatIOn 
for lim eps~k); in fact, for kmax = even, and if the eps~k) are the partial 

k-+ 00 00 

sums of a power series L: cixi, then eps [OJ coincides (theoretically) 
o 

with the value that would have resulted by evaluating the finite con-
tinued fraction (3) with m = kmax - 1. 

§ 36. Considerations Concerning Computer Limitations 

The designer of an ALGOL program for a typical textbook algorithm 
will observe that it takes comparatively little effort to transcribe the 
algorithm into ALGOL, but he will also observe that it often requires 
a much greater additional effort to achieve a program that produces 
useful results despite roundoff errors and other computer limitations. 
The present section serves to show some of the countermeasures which 
must be built into programs in order to make them run properly and 
- last but not least - to ensure proper termination of the program. 
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36.1. Quadratic equations 

On first sight one would hardly suspect that the classic formula 
x:= -p/2+sqrt(pt2/4-q) for solving the equation x2+px+q=0 
might be endangered by computer limitations, and yet it bears two 
sources of trouble: 

First, if we solve e.g. x2 - 700 x + 1 = 0 with 7 decimal digits relative 
precision, the above formula yields for the smaller root: 

x= 350 - sqrt (122499) = 3 50 - 349.9986= 0.0014. 

Due to cancellation of digits, this result has a relative error of 2 %. 
This rather poor result can of course be improved by computing the 
larger root first, after which X2=q/X1; this yields here 

x 2 = 1/699.9986 = 0.0014285 74. 

Second, the above formula, because of the occurrence of Pt2, can be 
used only for about half the exponent range. Indeed, in a computer in 
which floating point numbers are confined to the interval 

x< 264 = 1.844' 1019, the equation x2 -1012 x+ 1016 = 0 

can no longer be solved by that formula and this despite the fact that 
the roots (1012 and 104 approximately) are well within the prescribed 
range. 

The following program for computing the two roots can be used in 
the full number range and without fear of inexactness for the smaller 
root x2: 

«begin 
if abs(p) > 100 then 
begin 

d:= 1/4-q/P/P ; 
if d< 0 then goto complx ; 
xl:= -p X (1/2+sqrt(d)) ; 

end 
else 

begin 
d:= Pt2/4-q ; 
if d< 0 then goto complx ; 
xl: = - P/2 - (if p> 0 then sqrt(d) else - sqrt (d)) 

end it - else; 
x2:= if xl=O then 0 else q/xl 

end». 
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Note. The somewhat strange expression 1/4-q/P/P on the fourth line 
of the program would seem to be equivalent to 1/4-q/Pt2; however, 
the latter implies evaluation of Pt2, which might again cause overflow, 
whereas q/P/P would not (it might produce underflow, but this is no 
problem). 

36.2. Newton's method 

In order to improve the unsatisfactory jumpout condition of the 
program given in 31.2, it should be recognized that the true source of 
the trouble are the roundoff errors involved in the computation of I(x), 
which completely overshadow the value of I as soon as it becomes small. 
A possible remedy is therefore to jump out of the loop as soon as I 
comes down to the order of magnitude of the roundoff errors. This 
requires that the influence of these errors (in the computation of I) be 
carefully estimated: 

The essence of computing I is the recurrence relation Inew: = 

IOldxx+a[k] in which we distinguish for the moment the value of I 
before and after the operation. By this formula the error of lold is multi­
plied by x, but also a new error is produced, namely, if h denotes the 
largest possible relative error of the computer: 

~ hxxx/old in the multiplication x X IOld , 
~ hxMax(!xx/old!, !a[kJl) in the adjustment (if any) before the 

addition of a [k] , 
~ hx/new in the adjustment (if any) after addition 

of a [k]. 

Observing that Max (! x X/old!, ! a [k JI) ~ ! x X/Old! + ! Inew!, the error con­
tributions can be computed parallel to the computation of I itself in 
the same loop as follows (a variable noise is introduced which is to be 
multiplied by h to obtain the maximum error itself): 

«noise:= 1:= 0 ; 
noise: = abs (x) X noise + abs (x X I) ; 

I:=xx/+a[n] ; 
noise: = noise + abs (I) ; 
noise: = abs (x) x noise + abs (x xl) ; 

1:= xx/+a[n-1] ; 
noise: = noise + abs (I) ; 
noise: = abs (x) X noise + abs (x X I) ; 

1:=xx/+a[O] ; 
noise: = noise + abs (I) ;» 

) k=n 

) k =n-1 

} k=n-2 

) k=O 
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This scheme shows that we can combine the operation noise: = 
noise + abs (I) at the end of one loop with the operation noise: = 
abs(x) xnoise+abs(xx/) at the beginning of the next turn of the loop 
and replace it by noise: = abs (x) xnoise+2 xabs (x xl). The final opera­
tion noise:= noise + abs (I), which is in this way omitted, is an unim­
portant contribution. 

By other considerations we find that the iteration should be con­
tinued as long as the computed I remains above six times the noise 
level, i.e. as long as 

abs (I) > 6 x noise X h . 

However, this criterion uses a value h which is different for different 
computers. In order to arrive at a computer-independent criterion, we 
rewrite the above condition as 

abs (1)/(6 X noise) > h, 
which is equivalent to 

1 +abs (1)/(6 X noise) > 1. 

On the whole the following program is obtained: 

« begin 
r: I : = g : = noise: = 0 ; 

for k:= n step -1 until 0 do 
begin 

noise: = abs (x) X noise + 2 X abs (x X I) ; 
g:=xxg+l; 
1:= xxi +a[k] 

end k; 
x:=x-I/g; 
if 1 + abs (I) / (6 X noise) =1= 1 then goto r 

end». 

Of course this program is not quite foolproof either, since we have 
still not eliminated the danger of a small or vanishing g, which should 
be banned, too. Also the imminent danger of overflow during calculation 
of I and g is not eliminated in the above program. Indeed, if we attempt 
to solve 

X20+ 1000X19 + 1 =0, 

starting with X= -1000, we obtain 1= 1, g= _1057, where the latter is 
already outside the (floating point) number range of certain computers. 
However, we do not pursue this problem any further here. 

36.3. Monotonicity as a termination criterion 

Where a theoretically monotonic iteration process is carried out nu­
merically, it will be observed that mono tonicity is lost after a certain 
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number of steps. This is very likely, though not always, the proper 
moment to discontinue the process, which is all the more welcomed, 
as it is often difficult if not impossible to find other effective jumpout 
criteria for iteration processes. 

A trivial but characteristic example is the iteration process 

xo:= (1 +a)/2, 

which produces a monotonically decreasing sequence converging to ya. 
In actual computation, however, monotonicity is destroyed as soon 

as ya - Xk comes down to the roundoff-error level; obviously this is the 
proper time for terminating the process. 

To use the process in ALGOL (which is not actually needed because 
sqrt is available as standard function), we denote Xk by y, Xk+l by x 
and terminate as soon as y> x (which theoretically should be true 
forever) no longer holds: 

dor x:= (1+a)/2, (a/y+y)/2 whiley>x doy:= n. 

Of course one might argue that y> x could be true forever despite 
roundoff errors, in which case we would indeed obtain a closed loop. 
However, this cannot be so for the following reasons: 

Assume that y agrees to more than half of the digits with a and 
that we have a binary computer, h having the same meaning as in 36.2. 
Then for certain (J's in the range I (J I ;:::::; 1 and omitting terms smaller 
than o (h!) : 

y = ya + (Jo yayh, hence a/y = Va - (Jo ya% + (J~yah + (Jl h ya 
(the last term being the roundoff error of division), 

a/y + y = 2yii + (J~yah + (Jlh ya + 2(J2 yah 

(the last term being the roundoff error of the addition), and finally 

x = ya + (J~yah/2 + (Jlhya/2 + (J2 Vah= ya + 2(Ja yah. 

Now if ya has a mantissa slightly below 2, then 2ya h are two units 
of the last place of x; the possible values for x must therefore lie on an 
interval whose length is four units of the last place, which leaves five 
possible values for x, and these same values are also possible for the 
following steps. Therefore, after at most four further steps, y> x can 
no longer be true. 

36.4. Overflow in continued fraction evaluation 

If convergence of a continued fraction 

1J+1J+JJ+". I gl I gz I gs 
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is slow, then the evaluation algorithm described in 35.2 must run up to 
very high values of k in order to achieve the desired result. However, in 
doing so, very large values Ak and Bk may be produced, causing overflow 
of the exponent of floating point number representation, even if the 
coefficients Ik' gk are not large1. 

In order to prevent overflow as well as underflow it is recommended 
to check from time to time the size of A k, Bk, A k- 1 , Bk- 1 (which in 
fact are the values a [1J, b [1J, a [ -1J, b [ -1J in our program) and rescale 
them whenever needed. This is done by the following program which 
checks every tenth step and to this end uses a subordinate (1-) loop 
for counting the ten steps inside the (k-) loop for counting the blocks 
of ten steps. 

« begin 
p:= 1; 
a[1J:= 0; b[1J:= 1 ; 
a [ - 1 J : = II ( 1); b [ - 1 J : = gg ( 1) ; 
for k:= 0 step 10 until kmax do 
begin 

forj:= 2 step 1 until 11 do 
begin 

1:= 11(f+k); g:= gg(f+k) ; 
a[pJ :=gxa[ -pJ+/xa[pJ ; 
b[PJ:= gxb[ -PJ+/xb[pJ ; 
P:=-P 

end j ; 
cl:= a[1J/b[1J ; 
cg:=a[-1J/b[-1J; 
if abs (c- cg) < eps then goto ex ; 

max :=labs(a[1J)+abs(a[ -1J)+abs(b[1J)+abs(b[ -1J) ; 
if max> 1020 then d:= 10-20 
else 

if max < 10 - 20 then d : = 1020 
else 

goto out; 
a[1]:= dxa[1J; b[1]:= dXb[1] ; 
a[-1]:=dxa[-1J; b[-1]:=dxb[-1]; 

out: end k ; 
ex: 

end). 

1 The reader will observe that the bisection method for computing eigenvalues 
of tridiagonal matrices uses similar recurrence formulae and therefore is subject to 
the same danger of overflow. 
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36.5. Underflow in orthonormalisation processes 

Schmidt orthonormalisation as described in 34.1 by formula (1) re­
quires that the vectors vinew}, v~new}, ... , v~~~} be strictly orthonormal. In 
an attempt to guarantee this, special measures have been built into 
the program given in 34.1, and yet the program may still produce wrong 
results because of underflow that might occur during execution of the 
statement Uk. 

On first sight such underflow would seem extremely unlikely or even 
impossible; however, it should not be overlooked that if a large number 
of nearly parallel vectors should be orthonormalized, then every execution 
of statement ortk may reduce the length of the k-th column vector of 
the array a considerably. Therefore, if the computer has a comparatively 
small exponent range, it may well occur that at a certain stage in the 
process some of the a [f, k Jt2 (k fixed) are a little below and some just 
a bit above the underflow limit, whereupon the computed length of 
the k-th column vector of a is too small; hence the normalized k-th 
column is longer than 1 by an amount which is considerably larger than 
the roundoff errors would explain. Since the further course of the cal­
culation requires (within computer accuracy) strict orthonormality, we 
must be prepared for erroneous results. 

In order to avoid trouble of this sort, the following process is re­
commended for normalizing a vector v given by its components v [1], 
v [2], ... , v [n] : We do not add the squares of v [f] butinstead the squares 
of v [j]/vmax, where vmax denotes the maximum of all abs (v [j]). In 
this way the following program emerges: 

«begin 
vmax:= 0; 
for f:= 1 step 1 until n do 

if abs (v [j]) > vmax then vmax : = abs (v [f]) ; 
if vmax = 0 then goto zero ; 

comment zero is the place where the computation continues in case v 
is the zero vector ; 

s:=O; 
for f : = 1 step 1 until n do s : = s + (v [f]/vmax)t2 ; 
c : = vmax xsqrt (s) ; 

comment Here s = length of vector v ; 
end). 

Naturally the question of economy must be raised here, since this 
way of computing the length of a vector is an obvious waste of time 
if this length is not of extreme order of magnitude. Of course we can 
at least avoid the n divisions v [f]/vmax if v is a vector of" normal" size, 
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but for taking advantage of this possibility the size of vmax must be 
tested as follows: 

«if (if vmax> 100 then O.01jvmaxjvmax else 10-10 Xvmax xvmax) =1= 0 
then begin comment Follows normal evaluation of length of v ; 
... end else begin comment Abnormal case; ... end». 

In this if-clause the left hand side of the relation has the value 0.01 jvmaxt2 
or 10-10 X vmaxt2. The first alternative serves to exclude overflow, the 
second to prevent underflow in the computation of those v UJt2 which 
are still important contributions to s (assuming an 10-digit mantissa). 

36.6. Bandmatrices 

Another kind of computer limitation is the finite storage capacity 
which forces us to economization if large matrices are used in a cal­
culation. A classical example of this sort are bandmatrices, which often 
occur in eigenvalue problems and as coefficient matrices of linear systems. 

A bandmatrix is defined as one which has nonzero elements only in 
the vicinity of the diagonal, i.e. one whose elements a [i, k J (i, k = 
1,2, ... , n) have the property 

a[i,k]=O for li-kl>m, 

where m is a certain number called the bandwidth of the matrix. Of course, 
according to this definition every matrix is a bandmatrix if we take 
m=n -1, but the essence of this notion is that bandmatrices with m 
appreciably smaller than n allow enormous savings in computing time 
as well as storage requirements, if only the computation is organized 
properly. 

In order to save storage space, the band of nonzero elements of the 
matrix A = (a [i, i]) must be transformed into a rectangular array 
B = (b [i, k J) as follows: 

Fig. 30 

The array element a [i, iJ of A is transformed into the element b [i, i - i] 
of the array B, which, since a [i, iJ =1= 0 only if Ii - il ~ m, can be de­
clared as 

«orroy b [1 :n, -m:mJ» 

9 Rutishauser, Description of ALGOL 60 
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and thus requires only (2m+ 1) n storage places instead of nt2 for the 
usual matrix notation. 

The bandmatrix notation. as we shall call this kind of representation 
of a bandmatrix. has the property that the first subscript indicates the 
line. whereas the second subscript is the distance from the diagonal. 
The diagonal elements thus appear as b [i. 0]. whereas b [i. k] with posi­
tive (negative) k denotes a super (sub)-diagonal element. For symmetric 
bandmatrices we might achieve a further saving since in this case B 
need only be declared as 

«array b [1: n. O:m] ». 

Note that the array b contains two small corners consisting of elements 
b [i. iJ (those with i+i> n and those with i+i< 1) which do not cor­
respond to elements within the matrix A; in the following we shall 
assume that these b [i. iJ are all zero. 

Of course we can use bandmatrix notation only if we reformulate our 
numerical methods in terms of this notation. How this may be done is 
shown below for the Banachiewicz modification of the Gauss elimination 
process as described for full matrices in 31.1: 

First. it must be investigated which of the step-until elements of 
the Banachiewicz program must be changed as a consequence of the 
bandform of the matrix: The i-loop is not touched. but the subscript k 
is restricted to the interval i-m~k~i+m since outside we have 
a [i. k] = O. and also statement sum would then be void. Indeed. in this 
latter statement the subscript i is restricted to the interval max (k-m. 
i-m)~i~min(k-1. i-i) since for other j's either a [i. iJ or a [i. k] 
vanishes. 

Second. any a[p. qJ will be replaced throughout by b[P. q-P]. and 
new subscripts i = iold - i and k = kOld - i are introduced. Observing the 
subscript bounds for iold. kold• we obtain the following bounds for i. k 
(compare also Fig. 31): 

ll=max(1-i. -m)~k~m 

l2=max(k-m. -m.1-i)~i~l3=min(k-1. -1) 

l1~i~-1 

(second for-clause) 

(third for-clause) 

(fourth for-clause). 

With these modifications. the following program (without backsubstitu­
tion) emerges: 

«for i : = 2 step 1 until n do 
begin 

11:= if 1-i> -m then 1-i else -m ; 
for k : = II step 1 until m do 
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begin 
l2:= if k-m>ll then k-m else 11 ; 
l3:= if k>O then -1 else k-1 ; 
t :=b[i,k]; 
for i:= l2 step 1 untill3 do t:= t+b[i, 11 xb[f+i, k-11 ; 
b[i, k]:= if k<O then -tJb[k+i, 0] else t ; 

end k; 
fori:=ll step 1 until-1 dos[i]:=s[i]+b[i,11xs[i+i] 

end i ; I>. 

k<O 
[gs-m 

ZJ-k-1 

(i-m.k,m)~ 

{i f k-l,tJ ~ 

C==~L~i,O 

Fig. 31 

According to the running of the subscripts, this piece of program 
solves a linear system with an effort on the order of nm2 multiplications 
and additions compared to n8/3 multiplications and additions for a full 
matrix. It is therefore well worth considering bandmatrix notation in 
such cases as n=200, m=10. 

However, it should be recognized that this program, like the one 
given in 31.1, does not search for the largest pivot element and therefore 
can be used safely only under certain restrictions, e.g. if the coefficient 
matrix is symmetric and positive definite or diagonally dominant!. 

1 Compare [38] for a program which solves linear systems in bandmatrix nota­
tion and yet searches for pivots. 

9* 
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§ 37. Data Processing Applications 
Although ALGOL was not intended originally for general data pro­

cessing, it seems that it can be used quite efficiently for this purpose. 
Of course, where data processing must be done with utmost efficiency, 
the use of ALGOL is not recommended. In fact, many processes described 
in this section can be executed far more efficiently by so-called code 
procedures (for which see § 47). 

37.1. Pseudostring representation 

It would appear that it is best to handle data in ALGOL as strings 
as they are described in § 12; however, since the operations that can be 
performed upon strings in ALGOL are entirely insufficient, we cannot 
use the string concept of ALGOL here. Instead we represent single char­
acters by integers and therefore data, i.e. strings of characters, as integer 
arrays. As a consequence, all data processing operations must be simu­
lated by operations upon integer arrays, and only upon input and output 
are these integer arrays converted from and into actual data (e.g. via 
the standard procedures insymbol, outsymbol, for which see § 50). 

For the time being we make use of a fixed correspondence between 
ALGOL symbols and the integers 1 through 116: 

Integer representation ~ basic symbol 

1 0 21 = 40 ; 59 array 78 n 97 G 
2 1 22 ;;;; 41 .- 60 switch 79 0 98 H 
3 2 23 > 42 U 61 procedure 80 p 99 I 
4 3 24 =!= 43 step 62 string 81 q 100 J 
5 4 25 true 44 until 63 label 82 r 101 K 
6 5 26 false 45 while 64 value 83 s 102 L 

7 6 27 - 46 comment 65 a 84 t 103 M 
8 7 28 ::::> 47 ( 66 b 85 u 104 N 

9 8 29 V 48 ) 67 c 86 v 105 0 
10 9 30 A 49 [ 68 d 87 w 106 P 
11 10 31 ---, 50 ] 69 e 88 x 107 Q 
12 32 goto 51 

, 
70 f 89 Y 108 R 

13 + 33 if 52 
, 

71 g 90 z 109 5 
14 - 34 then 53 begin 72 h 91 A 110 T 
15 x 35 else 54 end 73 i 92 B 111 U 
16 / 36 for 55 own 74 i 93 C 112 V 
17 37 do 56 Boolean 75 k 94 D 113 W 
18 t 38 , 57 integer 76 1 95 E 114 X 
19 < 39 : 58 real 77 m 96 F 115 Y 
20 ~ 116 Z 

It should be recognized that this correspondence is in no way stan­
dardized or obliging but is only an ad hoc construction for our present 
purposes. 
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In the following we assume throughout that a string of basic symbols 
is represented as a pseudostring, i.e. an integer array, every component 
of which represents - by virtue of the correspondence table above -
one single character. More precisely, a pseudostring has the form 
integer array a [O:bigmJ, where a[1J, a[2J, ... , a [a [OJJ represent the 
characters which form the string, whereas a [a [ OJ + 1], ... , a [bigm J are 
meaningless. a [OJ is therefore the actual length of the string; bigm, how­
ever, is a standard upper bound for all strings to be used in the problem. 

As an example, with bigm= 80, 

state [0:80J = (9, 90, 41, 47, 86, 13, 2, 48,18,3,0, ... , 0) 

is the pseudostring representation of the ALGOL text «z:=(v+1)t2». 
We can now describe the following elementary operations upon 

pseudostrings : 
a) Append a pseudostring b to a pseudostring a. The length of the 

combined string is a [OJ + b [0]: 

« begin 
if a[OJ+b[OJ>bigm then goto overfl; 
for k:= 1 step 1 until b[oJ do a[k+a[OJJ:= b[kJ ; 
a [OJ := a[OJ+b[OJ 

end». 

b) Split a pseudostring a into two pseudostrings b, c of length p and 
a [OJ - P respectively. If p exceeds length a [OJ of given string a, c will 
be empty, hence c [OJ = 0, b [OJ = a [0]. 

«begin 
for k:= P+1 step 1 until a [OJ do c[k-PJ:= a[kJ ; 
c [OJ:= if p<a[OJ then a [OJ -p else 0 ; 
b[OJ:= if p<a[OJ then p else a [OJ ; 
for k:= 1 step 1 until b[oJ do b[kJ:= a[kJ 

end». 

c) Compare two pseudostrings, disregarding spaces: 

«begin 
ka:= kb:= 0 ; 

xa: ka:= ka+1 ; 
if ka> a [OJ then goto xb ; 
if a [kaJ = 42 then goto xa ; 

xb: kb: = kb + 1 ; 
if kb> b [OJ then goto xc ; 
if b [kbJ = 42 then goto xb ; 

String a exhausted. 

Skip space in a. 

String b exhausted. 

Skip space in b. 
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xc: if ka~ a [OJ == kb> b [OJ then match: = false 

else 

The two strings are 
of different length. 

if ka> a [OJ /\ kb> b [OJ then match: = true 
else 

The two strings are 
identical. 

A character pair in 
which the strings 
disagree is found. 

if a [ka J =l= b [kb J then match: = false 

else 
We have agreement up to this point; proceed 

goto xa ; to comparison of next character pair. 

comment Here match = true iff the two strings agree; 
end). 

37.2. Format handling 

A value x of real type shall be printed with a simple format given as 
a sequence of 9's, sign, spaces, decimal point and arbitrary text (similar 
to the FORTRAN-F-format). As an example the format string 
« u u x u = u - 999.999 u 999 u u u) means that numbers should be 
printed e.g. as 

1 x = 003·141 592 1 or I x = -752.002 357 I· 

We do not attempt to suppress zeros or to round correctly at the end, 
but overflow will be signaled. 

It is assumed that the format is given as a pseudostring f according 
to the above conventions and that the number to be printed will also 
be produced as such a pseudostring g (how the printing is actually done 
will be shown later in § 50). This task is performed by the following 
piece of program: 

«begin 
for k : = 1 step 1 until f [OJ do 
begin 

if t[kJ=10 then x:= xj10 ; 
if f[kJ=12 then goto out; 

end k; 
out: g[OJ := f[oJ ; 

sign:= (x~O) ; 
x:= abs(x) ; 
if x~ 1 then goto overfl ; 

for k : = 1 step 1 until t [OJ do 
begin 

First pass (up to the decimal point 

} of the format string) determines 
number of digits in the integral 
part and adjusts x. 

{ Given x exceeds size of format. 
Jump out of this program. 

{Beginning of loop for generating 
actual output string g. 

if f[kJ = 14 then g[kJ : = if sign then 42 else 14 ) Decision con­
else cerning print­

iff[kJ=13 theng[kJ:= if sign then 13 else14 ing of sign. 
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end k 
end». 

else 
if f[kJ=10 then 
begin 

x:=10Xx; 
g[k]:= entier(x) + 1 
x: = x - entier (x) 

end 
else 

g[kJ:= f[k] 

I A 9 in the format causes printing of 
; one digit and removal of the 

printed digit from the number x. 

All other symbols are just copied. 

37.3. Sorting 

Let a be a two-dimensional integer array a[1 :n, 0: bigm] , every row 
of which is a pseudostring of at most bigm characters. These n sets of 
data should be sorted with respect to characteristics found in the s-th 
through t-th character of every pseudostring. In other words, the char­
acters a[k, sJ, a[k, s+1J, ... , a[k, t] form the keyword for the k-th 
pseudostring; after sorting, all these keywords should appear in a pre­
scribed order. For this purpose a function rp (n) - in ALGOL given as 
a function designator Phi (n) - defines the ordering of the basic symbols 
such that the character represented by the integer p is considered as 
preceding the character represented by q if and only if Phi (P) <phi (q). 

As to the technique of sorting, we assume that the first k - 1 data 
sets (rows 1 through k -1 of the array a) have already been sorted. 
Then the correct place for the k-th data set among the k -1 already 
ordered sets is determined by binary search: Let p be the smallest 
power of 2 with the property p~k. Compare set k to set P/2, then 
depending upon whether set k comes before or after set P/2, compare 
set k to set P/4 or 3P/4, etc. Of course 3P/4 may exceed k; then we 
proceed in the same way as if set k were before (the nonexistent) set 
3P/4. As soon as we have compared set k to a set j with an odd value 
of j, the new position of set k is found. 

Needless to say, we do not actually move the data in this sorting 
process but only record the actions which should be taken as a permuta­
tion vector v[1:n], where v[k] says that the v[kJ-th row of arraya 
should be in the k-th position. 

« begin 
p:=2 ; 
v[1]:=1 
for k:= 2 step 1 until n do 
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begin 
ifk>pthenp:=2Xp; 
q:=l:=P!2 ; 

xx: first: = false; 
comment Next statement makes first = true, if and only if set k 

comes before set v [l] ; 
ww: for i:= s step 1 until t do 

if phi(a[k, iJ) =l=phi (a [v [l], i]) then 
begin 

first: = Phi (a [k, iJ) <phi (a [v [l], iJ) ; 
goto yy 

end if and i ; 
yy: if q =l= 1 then 

begin 
q:=q!2; 
1 := if first then l-q else l+q ; 
first: = true; 
if l;;;;' k then goto yy ; 
goto xx; 

end if q ; 
zz: if-,firstthenl:=l+1; 
vv: if1=l=kthen 

fori:=k-1 step-1 until1dov[i+1]:=v[i]; 
v [lJ := k 

end k 
end). 

Let us demonstrate the effect of this piece of program under the 
assumption that s=t=1 and that we have arrived at k=12, P=16, 
the 11 previous sets being ordered with Phi (a [v [i], 1])=2i, (i= 
1,2, ... , 11), while phi (a [12, 1]) =19. We pass the following points in 
the program: 

Beginning of k-loop: k = 12, P = 16, then q: = 8 ; 1: = 8 ; 

label xx: first: = false; 
ww: compare phi (a [12, 1]) =19 to Phi (a [v [8], 1]) =16, 

first: = false; 
yy: q:=4; /:=12; l;;;;'k, therefore gotoyy! 
yy: q:= 2; 1:= 10; 1< k, goto xx ! 
xx: first: = false ; 

ww: compare phi (a [12, 1]) =19 to phi (a [v [10J, 1J) =20, 
first: = true ; 

yy: q: = 1 ; 1: = 9; 1 < k, goto xx ! 
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xx: first: = false; 
ww: compare phi (a [12, 1]) =19 to phi (a [v [9], 1]) =18, 

first: = false; 
yy: q = 1, hence proceed to 
zz: l:= 10 ; 

137 

vv: rearrange the v's: v[10], v [11] are shifted one place upwards, 
whereupon 12 is assigned to v [10]. 

37.4. Differentiation of an arithmetic expression 

Given a very simple arithmetic expression using only the arithmetic 
operators + - X I and containing neither subscripted variables nor 
function designators, our task is to construct automatically another 
arithmetic expression which computes the derivative of the given ex­
pression with respect to a prescribed variable. This problem is of con­
siderable practical importance since it can be extended to the transfor­
mation of an ALGOL program into another one which computes the deriva­
tives of all results with respect to prescribed variables. However, only 
a rather restricted version of the general problem is solved here; as an 
example, we do not collect identical terms of the derived expression. 

We assume that the arithmetic expression is given in pseudostring 
representation as (dnteger array a[O:bigm]» and also that the name 
of the variable with respect to which it should be differentiated is given 
as a pseudostring « integer array name [0: bigm] ». Likewise the derived 
expression should be produced as a pseudostring b [0: bigm ]. 

In order to solve the restricted problem as stated before, we in­
vestigate the terms of the given expression E between adjacent additive 
operators +, -. These terms have the syntactic form 

({ V op V op V ... op V op V», 

where the V's are numerical constants or variable identifiers and the 
op's denote the multiplicative operators x, I. Every term is scanned, 
and for every occurrence of the variable X (with respect to which E 
should be differentiated) a new term of the derivative expression E' is 
produced in the obvious way. However, where X is preceded by a solidus 
I, the sign of the new term must be reversed and the sequence IXt2 
must be inserted. Finally, the contributions of all terms are collected to 
form the expression E'. 

In this process the following variables are used: s counts the char­
acters read from E, t counts those put into E', iden counts characters 
while an identifier is analyzed. During examination of a term of E, 
op [0] indicates the position of the preceding additive operator within 
the pseudo string a, likewise op [k] the position of the k-th multiplicative 
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operator of the term. Finally, the Boolean variable x [k] indicates whether 
or not the k-th factor of the current term is the variable X with respect 
to which we differentiate. 

«begin 

space:= sig:= t:= iden:= 0 ; 

for s : = 1 step 1 until a [0] do 
II: begin 

lSig is sign of current term in 
pseudostring notation. sig = 0 
means that only spaces have been 
met so far. 

Every turn of this loop analyses 
one character of E. 

if sig=OA (a [s] = 13 Va [s] = 14) then goto III 
else 

12: 

13: 

if sig=OAa[s] =1=42 then 
begin 

sig:=13 ; 
°P[O]:=s-1 
k:= 0; 
goto 112 

end if else; 
ifa[s]~13Aa[s]~16 then 
begin 

k:=k+1 ; 
oP[k]:= s ; 
if iden < name [0] then 

match: = false; 
x[k] := match; 
iden:= 0 

end l3 ; 

if a [s] = 13 Va [s] = 14 then 

14: begin 

15: 

16: 

ifk=1Ax[1] then 
begin 

t:=t+2; 
b [t - 1] : = sig ; 
b [t] := 2 

end 
else 

for f : = 1 step 1 until k 
do if x [f] then 

Initialisation; if 
E does not begin 
with a sign, a + 
is placed in front 
of it. 

If an arithmetic operator is found, 
a factor of a term is completed. k 
counts the factors in a term, op [kJ 
is position of k-th multiplying oper­
ator in a term, op [OJ denotes posi­
tion of last adding operator. x [kJ = 

true means that the k-th factor of 
the term is the differentiation vari­
able. 

{
If an adding operator is found, a 
term is completed; the derivative 
of the term is now built up. 

If there is only one factor and this 
is just the differentiation variable, 
the derivative is 1. 

Every occurrence of the differenti­
ation variable X in a term gives 
rise to a term of E'. All these de­
rived terms are now collected. 



17: 

18: 

19: 

110: 
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begin 
t:=t+1 

b[tJ:= if a[op[f-1JJ =F16 
then sig else 27 - sig ; 

Occurrence of the differen­
tiation variable as denomi­
nator causes a sign inver-
sion. 

fori:=op[O]+1 step 1 
until op[i-1J-1 do 

begin t:= t+1 
Copy that part not involved 
in differentiation. 

b[tJ:= a[iJ 
end; 

if a[op[i-1JJ=16 then 

begin 

for i: = op [i-1J step 1 until 
op[n-1 do 

if a [i] =F 42 then 

beg i n t : = t + 1 
b[t]:=a[i] 

end; 
t:=t+2 ; 
b [t - 1 J : = 18 ; 
b [t] : = 3 ; 

end 19 ; 

if f = 1 A a [oP [f]] = 16 then 

begin 
t:=t+2 ; 
b[t-1J := 2 ; 
b[tJ:= 16 

end if f ; 
for i : = (if f =1 then op [fJ + 1 

else op [f]) 
step 1 until oP[k] -1 do 

begin t:= t+1 ; 
b [t] : = a [i] end ; 

If X occurs in a 
position IX, then 
IXt2 must be in­
serted; spaces art' 
rearranged. 

1 
Special handling 
if first factor is 
difierentiation 
variable followed 
by (. 

Copying where no 
differentiation is 
involved. 

end 17 ; 

if x[k] then 
Special measures which copy 

for i : = 1 step 1 until space do I spaces following a term into 
•. . the derived expression also 

begm t . = t + 1 , in that case where the term 
b [t] : = 42 end; was differentiated with re­

spect to its last factor. 
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111: 

112: 

113: 

ex: 
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if s = a [oj then goto ex ; 
sig:= a[s] ; 
k:=O; 
oP[O]:=s; 

end 14 ; 

Expression E exhausted. I Initialisation of next term 
(if any). op [OJ indicates po­
sition of adding operator in 
front of a term. 

if a [s] ~ 65 A a [s] ;;::;;90 V a [s];;::;; 10A iden =FO then 
begin 

if iden=O then match:= true; 
iden:=iden+1 ; 
match: = match A 

(a[s] = name [idenJ) ; 
end; 
if s=a[O] then 
begin 

k:=k+1 ; 
if iden< name [0] then 

match:= false; 
x[k] := match; 
oP[k]:= s+1 
goto 14 

end 113 ; 

I If a letter or a nonleading 
digit is read, this is part of 
an identifier which is now 
compared with the differ­
entiation variable X. 

If last character of E has 
been read, the same mea­
sures must be taken as if an 
adding operator had been 
found. 

space: = if a [s] = 42 then space+1 else 0 ; 
end s ; 

if t = ° then t : = b [1] : = 1 ; 
b[O]:=t 

If differentiated expression 

end)}. 

} is empty, we set E' = O. 
Length of string E' is in­
serted in b [OJ. 

If the term a X blc X xII (with name = x) is handled with this program, 
the statement 12 first puts (for s=1) oP[OJ:=O, sig:=13, and later 
yields: 

x[1] = false 
x [2] = false 
x [3] = false 
x [4] = true 
x[5] = false 

op [2J = 4 with state~ents 13, /12 
OP[1]=2) 

op [3 J - 6 for s - 1, 2, ... , 8. 
oP[4J = 8 
oP[5J=10, withstatement1l3, for s=9. 

After that, s= 10, and the jump to 14 is activated, which causes execution 
of statement 17 with i = 4. Hereby the pseudostring b is built up: b [1] 
is set to 13 (+), after which statement 18 adds a X blc, and finally state­
ment llO appends II to this pseudostring. Accordingly the result is 

+axbfcfl 
in pseudostring notation. 
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37.5. Operations performed upon packed data 

We have thus far assumed that every component of a pseudostring 
occupies a full machine word, but since these components are all positive 
numbers not exceeding 127, this is an obvious waste of storage space. 
To save storage, it would be appropriate to pack several (P, say) char­
acters into one machine word. In ALGOL such packing is achieved by 
combining p consecutive components x[s],x[s+1], ... , x[s+P-1] of 
a pseudostring x to an integer 

p-l 
LX [s+k] X 128P- 1- k 

k=O 

and processing this integer like other integers. The packing density p 
hereby depends upon the computer but is considered to be constant for 
each computer. 

The packing of a given pseudo string into a shorter array and the 
corresponding unpacking could easily, but not efficiently, be described 
in terms of ALGOL. In fact, in practice such packing and unpacking should 
always be done by code procedures (d. § 47). It is therefore more appro­
priate if we show how we can operate efficiently on packed data with 
the aid of two code procedures pack and unpack defined to have the 
following properties: 

pack (x, k, a) is a procedure statement which stores the integer value x 
(O~ x< 128) as the k-th component of a pseudostring which 
is packed into an array a. 

unpack (k, a) is a function designator which produces the value of the 
k-th component of a pseudostring which is packed into an 
arraya. 

Note, however, that for these procedures k does not count the com­
ponents of the array a but rather the components of the pseudostring as 
if it were not packed, e.g. with p= 5: 

a [0] a[1] a [2] 

1 2 3 4 5 6 7 8 9 10 

a[3] 

11 12 

'---_---'121 r-I ,"""",""""''---;1----;11 I }I' I 1-..1 ~~~.~. j irrelevant 
pack (x, 4, a) unpack (8, a) 

The packing density p is a machine constant and enters only implicitly 
into these procedures. However, the programmer must also know the 
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value of p for computing the upper subscript bounds for the packed 
arrays. 

With the above convention the concatenation of two pseudostrings 
(d. 37.1,a) is now described for packed data as: 

« begin 
if a [0] + b [0] > bigm then goto overll ; 
for k:= 1 step 1 until b[O] do pack(unpack(k, b), k+a[O], a) ; 
a [0] := a[O]+b[O] 

end». 

Likewise the program for format handling given in 37.2 can be adapted 
to packed data, as follows: 

«begin 
for k : = 1 step 1 until I [0] do 
begin 

Ik : = unpack (k, I) ; 
if Ik=10 then x:= x/10 ; 
if Ik = 12 then goto out 

end; 
out: g[O]:= 1[0] ; 

sig:= (x;;;;; 0) ; 
x:= abs(x) ; 
if x;;;;; 1 then goto overll ; 
for k : = 1 step 1 until I [0] do 
begin 

Ik : = unpack (k, I) ; 
if Ik = 14 then pack (if sig then 42 else 14, k, g) 
else 

end k 
end». 

if Ik = 13 then pack (if sig then 13 else 14, k, g) 
else 

if Ik = 10 then 
begin 

x:=10Xx; 
pack (entier (x) + 1, k, g) ; 
x:= x- entier(x) 

end 
else 

pack Uk, k, g) 

The transcription of a program for handling unpacked pseudo strings 
into one for handling packed data seems obvious. However, if we try 
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to transcribe the sorting program of 37.3, we run into serious difficulties 
since in this program a two-dimensional array a occurs, every row of 
which is a pseudostring representing a string of characters, whereas the 
code procedures pack and unpack apply only to one-dimensional arrays. 

To write a corresponding program for sorting packed data, we need 
therefore two other procedures which operate upon two-dimensional 
arrays. The corresponding procedure calls are then 

pack2 (x, k, f, a) as the equivalent of a [k, fJ : = x 

unpac2 (k, f, a) as the equivalent of the value a [k, iJ. 
With that, statement ww of the sorting program becomes 

«for f : = s step 1 until t do 
if Phi (ak [fJ) =+= phi (unpac2 (v [lJ, f, a)) then 
begin 

first:= phi(ak [fJ) <phi (unpac2(v [lJ, f, a)) ; 
goto yy 

end», 

provided we have unpacked the keyword of the k-th data set at the 
beginning of the k-loop and have stored it as the components s through t 
of an arrayak (this is done for reasons of economy): 

«for f : = s step 1 until t do ak [iJ : = unpac2 (k, f, a) ». 
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Declarations 

If we are going to write a complete ALGOL program, that is, one to 
be used for actual calculation and not just for explanatory purposes, 
the following requirements must be carefully observed: 
First, the program must have the syntactic form of a compound state-

ment or block, and 
Second, every quantity used in the program must be declared. 

The first of these requirements is easily met by enclosing the entire 
program by «begin» and «end», but in order to meet the second re­
quirement, every quantity to be used in a program must be quoted in 
an appropriate declaration within that program. However, this other­
wise strict rule has three well-defined exceptions: 

a) labels" declare themselves "; they therefore need no explicit de­
clarations. 

b) The standard functions and standard I/O-procedures (for the latter 
see Chapter VIII) are considered as permanently declared and therefore 
need not be declared again in an ALGOL program. 

c) Formal parameters of a procedure represent no true quantities and 
therefore need not be declared (but they must be specified; for this 
see 44.4.2). 

The natural question as to how a quantity is declared will be answered 
in § 38- § 41, where the various kinds of declarations are treated, but 
without considering their environment. The question as to where de­
clarations should be placed is answered as follows: Declarations can be 
given after every «begin», e.g. 

«begin .... -------------

begin .... -----------
___ appropriate places 

end ; for declarations 
begin .... ----------

begin .... --------

end 
end 

end ». 
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However, by placing a declaration after the «begin)} of a compound 
statement the latter is turned into a block, a fact which may have severe 
consequences for the execution of a program. These consequences are 
treated in § 42, where also the actual meaning of declarations and their 
interactions with the surrounding program are discussed. 

It might be asked why we do not just place all declarations im­
mediately after the first «begin)} of the program (which indeed is often 
the most convenient place). The main reason is that the proper distribu­
tion of declarations in an ALGOL program is an important instrument for 
the economisation of storage requirements (d. 43.3). 

§ 38. Type Declarations 

Simple variables are declared by type declarations which at the same 
time define their type (real, integer, Boolean), that is, the type of 
values that can be assigned to these variables. 

38.1. Examples 

«real x, y, a12, beta, tdj32)}, 
(<integer k)}, 
«Boolean verijy, discr, critic)}. 

These examples state that the names following the declarators « reaL>, 
« integer)}, « Boolean)} represent simple variables of the respective types. 

38.2. Syntax 

A type declaration has the syntactic form 

«T I, I, ... , I)}, 

where T denotes one of the three symbols « reaL>, « integer)}, « Boo­
lean)}, and the I's are arbitrary identifiers denoting simple variables. 
Syntactic diagram: 

0-'_~~ integer 

Fig. 32 

10 Rutishauser, Description of ALGOL 60 
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38.3. Semantics 

A type declaration « T 11' 12 , ... , I k » declares the simple variables 
11 ,12 , ••• , Ik of type T. As already indicated, such a declaration is only 
valid for the block at the beginning of which it appears. For further 
restrictions see § 42. 

§ 39. Array Declarations 
We recall that an array is a multidimensional arrangement of ele­

ments, everyone of which behaves like a simple variable, and that these 
components are distinguished by a set of p integers (subscripts) iI' i z, 

... , ip , where p is called the dimension of the array. 
An array is declared by an array declaration which also defines its 

dimension p as well as its extension, i.e. the array bounds (or subscript 
bounds) 11' ... , lp, u1, ... , up which delimit the p subscripts of the cor­
responding subscripted variables. 

39.1. Examples 

39.1.1. «array a, b, c[7:n, -1:i+jJ, x, y[1:10, 1:10, 1:abs(p-3)]» 
declares three two-dimensional arrays a, b, c and two three-dimensional 
arrays x, y, all five being of real type (i.e. all their components are of 
real type). 

39.1.2. «real array q [1 :n], e [O:n]» declares two one-dimensional ar­
rays1 (vectors) q, e, both of real type. Note that the leading symbol « real » 
is not actually needed. 

39.1.3. «integerarraya[-1:1, 7:8, 1:4]» declares one three-dimen­
sional array a of integer type with explicitly given array bounds. Accord­
ing to the latter, the array consists of 24 components 

a[-1, 7, 1], a[-1, 7, 2J, a[-1, 7, 3], a[-1, 7, 4], a[-1, 8, 1], 
a[ -1,8,2], a[ -1,8,3], a[ -1,8, 4J, a [0, 7, 1J, a [0, 7, 2J, ... 
... , a[1, 8, 3J, a[1, 8, 4J. 

This ordering shows one possible method (" storing by rows") for storing 
the components of a multidimensional array as a linear sequence. 

39.1.4. « Boolean array xxx [if c< ° then 2 else 1: 20] »declares aone­
dimensional array, each of whose components can assume one of the 
logical values true or false. 

In these examples the array bounds (boundaries of the hyperbox in 
the index-space) are given partially as explicit numbers, partially as 
values of variables. For the array xxx, the lower bound is given as a 
conditional arithmetic expression. 

1 Note that in ALGOL terminology a vector is always a one-dimensional array, 
and that what elsewhere is called the dimension of a vector, is in ALGOL expressed 
by the array bounds. 



§ 39. Array Declarations 147 

39.2. Syntax 

An array declaration contains one or more array segments, everyone 
of which declares a group of arrays of equal dimension and extension. 

39.2.1. An array segment has the syntactic form 

«1, I, ... , I[L: U, L: U, ... , L: U] >}, 

where the 1's denote arbitrary identifiers (the names of the declared 
arrays) and the L's and U's are subscript expressions. The syntactic 
construction «L: U >} is called a bound pair and defines the subscript 
bounds for the corresponding subscript position. 

39.2.2. An array declaration has the syntactic form 

« T array G, G, ... , G>}, 

where T represents either blank space or one of the declarators « real >}, 

(linteger >}, « Boolean >}, and every G stands for an array segment. 

39.2.3. Syntactic diagram: 

o----J idenl/IFel' 

slIbseripf 
0---..;----1 expl'es.sioll 

ref. 20.!) 

.. I tJl'l'ay idenlifiel' 

S'l.IbS'oripf 
e xpl'essioll ~--fh,bO;;;~;''fId-:;;pa;;;ir~ 
ref. 20.7) 

bOl.lnd pair 

Fig. 33 

39.3. Semantics 

39.3.1. Every array segment 

(1/1' 12 , ... , Iq [Ll: U1 , L2 : U2 , ... , Lp: Up] >} 
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of an array declaration declares the q arrays II' I z, ... , I q' all of which 
have the same dimension p and the same array bounds; the latter are 
defined by the actual values of the subscript expressions L1 , L z, ... , Lp , 

U1 , Uz, ... , Up. 
In other words, everyone of the arrays 11 ,12 , ••• , Ip consists of 

exactly those components Ii [K1 , K 2 , ••• , Kp) for which the subscripts K; 
satisfy the condition 

"value of Lt ~ K; ~"value of U/, (i = 1, 2, ... ,P), 

the values being taken at the moment of entry into the block in which 
the array declaration appears. 

39.3.2. The whole array declaration 

declares the total of all arrays appearing in all array segments G1 , G2 , 

... , Gm • All these arrays are of the same type defined by the declarator T. 
If T is blank space, then the arrays are of type real; therefore both 
declarations 

«arraya[1:n)) and «real array a[1:n)) 

have the same meaning. 

39.3.3. Evaluation ot array bounds. The subscript expressions L, U oc­
curring in an array declaration are evaluated when the declaration is 
encountered (i.e. upon entry into the block), and the actual values of 
all variables involved in these expressions are taken at that moment. 

The array bounds thus evaluated remain valid until the exit from 
the block, even if the variables from which they were computed change 
their values. As an example, the array bounds of the array a in the 
following piece of program remain [1: 7) throughout the execution of 
block b: 

« n:= 7 ; 
b: begin 

array a[1 :n) 
n:=2xn; 

end ;». 

39.3.4. Empty arrays. If in an array segment one of the array bounds Uk 
yields a value below the corresponding lower bound Lk , then all arrays 
declared by that array segment are empty (i.e. they have no components), 
and any reference to a component of one of these arrays will be undefined. 
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Accordingly « array a [1 : n]; a [1] : = 0» IS an incorrect piece of 
ALGOL program if n < 1, whereas 

« begin 
array a[1 :n] ; 
fork:=1 step 1 untilndoa[k]:=1; ... » 

is allowed even if n < 1, since in that case the reference to the array a 
is suppressed by the rule for empty for-list elements (d. 30.5.2). 

39.3.5. Undefined array bounds. In order that none of the subscript 
expressions L, U occurring in an array declaration yield an undefined 
value (in which case the program would be defective), all variables 
appearing in bound pairs must have defined values when the block is 
entered. This in turn implies the following rule: 

All variables and other quantities occurring in bound pairs of an 
array declaration must be declared outside the block in whose head 
the array declaration is located. 

The following is therefore not allowed: 

«begin 
integer ji ; 
array wrong [1 : ji] ; ... ». 

For an array declaration given at the very beginning of a program, 
the above rule has the consequence that the subscript expressions L, U 
can contain only explicitly given values, e.g. 

«array a [1: 17, -1: 3], b, c [1: entier(exp (5))], 

d, e, f [length (' abc u de//,) : entier (2t7.251)] ». 

39.4. Unused components of an array 

There is of course no obligation to use all the components of an 
array. Therefore, if for a certain computation approximately the first 
50 coefficients of a power series will be used, but nothing more is known 
about their exact number, we may begin the program with 

«begin 
real array coeff [0: 200] ; ... ». 

The possibly unused components coeff[51] through coeff[200] will do 
no harm, whereas a too small upper bound will certainly cause trouble. 

Another example are symmetric matrices. For these, many numerical 
methods can be programmed such that the subdiagonal elements do not 
enter the computation, a fact which reduces computing time consider­
ably. However, because of the syntax and semantics of array declarations, 
always the full matrix must be declared (e.g. «arraya[1:n, 1:n]»), 
while the subdiagonal elements are simply not used. 



150 VI. Declarations 

On the other hand, one should not be too generous with respect to 
array bounds because the translated program has to provide storage 
space for all components of a declared array whether they are used or not. 

§ 40. Switch Declarations 

A switch declaration declares a certain identifier to represent a switch, 
i.e. a selecting mechanism which serves to give corresponding switch 
designators (d. 25.2) a meaning. 

40.1. Examples 

« switch wernik: = arica, acryl, m17, larix», 

«switch llll:= nora». 

Switch wernik allows selecting one of the four labels listed, e.g. 
«wernik [3J» will select label m17. In the second example the switch 
list contains only one label, which is allowed but not very meaningful 
(it allows only the application «goto llll[1J I»). 

40.2. Syntax 

A switch declaration has the syntactic form 

«switch 1:= L, L, ... , L», 

where I is an identifier (the switch identifier, i.e. the name of the switch) 
and the L's denote arbitrary (source-) labels. The syntactic construction 
«L, L, ... , L» is called the switch list. 

Syntactic diagram: 

o II I idenllfief' • I S'wilDfl idenllfief' 

S'wlfdJ Identlflef' 

SW"'" lisf { label (cf. § 71) 

Fig. 34 
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40.3. Semantics 
The selecting mechanism of a switch I declared by 

«switch I:= L1 , L2 , ••• , Lp» 

works as follows: If a switch designator «I [ EJ »1 (where I is the same 
identifier as above) is encountered, the following actions take place: 

a) The expression E is evaluated and its value is rounded to the 
nearest integer. 

b) If the value thus obtained is k, and if 1 ~ k~p, then the source­
label Lk is selected from the switch list and used in place of I[EJ. 

c) If the value k is < 1 or > p, (where p is the number of entries 
to the switch list) then the switch designator I[EJ is undefined. 

Accordingly, «goto wernik [2J », where switch wernik is defined as 
in 40.1, is equivalent to «goto acryl», but as a consequence of c) such 
statements as 

«goto ammon [OJ », 
«goto wernik [kJ », 

or 
where e.g. k = - 3 or k = 5 , 

are undefined. 

40.4. Influence of scopes (compare also § 42) 
40.4.1. A switch designator (<I[EJ» must of course be within the scope 
of switch I and also within the scopes of all quantities which appear in 
the expression E. However, the destination of a jump «goto I[EJ» 
may well be outside the scope of I. 
40.4.2. The environment rule for switches. It is an absolute must that 
everyone of the source labels Lk appearing as entries of a switch list 
be within the scope of a matching destination label Lk • It is always this 
latter which is considered as the destination label corresponding to the 
source label L k • 

In other words, while the expression E in a switch designator «I[EJ» 
is evaluated at the location of the latter, the destination of the jump is 
selected at the location of the declaration of switch I. 
40.4.3. Example. 

--J>- «aa: begin 
switch abc: = aa, bb, cc ; 

--J>- bb: begin 
integer aa ; 

bb: aa:= k; 
cc: goto abc [aaJ 

end; 
--J>- cc: end». 

1 Note that in SUBSET ALGOL 60 switch designators can occur only after the 
symbol «goto». 
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Obviously the switch designator in «goto abc [aa J >} meets the re­
quirements of 40.4.1, and also 40.4.2 is fulfilled since for everyone of 
the three entries in the switch list there is indeed a corresponding des­
tination label (these are indicated by arrows). Thus the jump «goto 
abc [aa J >} will, if e.g. aa = 1, be directed to the destination label aa at 
the beginning of this program fragment. It is no offense against the 
rules that this label aa is suppressed at the location of the jump, nor 
that it is outside the scopes of both switch abc and integer variable aa. 

If on the other hand aa=2, then the jump will not be directed to 
the label bb in front of the statement «aa: = k >} but to the label bb in 
front of the inner block since the switch declaration is within the scope of 
the latter. It is interesting to note that within block bb «goto abc [2J >} 

is not equivalent to «goto bb>}. 

40.4.4. A counterexample: 

«begin 
switch bmn : = x, y, z ; 

aa: begin 

x: 
y: 
z: 

integer kappa; 

goto bmn [kappa J 
end 

end>}. 

The jump « goto bmn [kappa J >} is correctly within the scopes of both 
bmn and kappa; however, the destination labels x, y, z are valid only 
within block aa. Hence, if no other labels x, y, z which meet the con­
ditions stated in 40.4.2 exist outside this program fragment, the de­
claration for switch bmn is illegal. The situation might be corrected by 
inserting the switch declaration immediately after the declaration for 
kappa. 

§ 41. Procedure Declarations P 
A procedure declaration defines a procedure, which is a prefabricated 

ALGOL subroutine that may later be called through a corresponding 
procedure statement or function designator. Besides stating the identifier 
to be used as name of the procedure, the procedure declaration contains 
a list of the formal parameters which denote the formal operands of the 
procedure, a specification part defining kinds and types of all formal 
operands, and finally the procedure body which is a description of the 
procedure in terms of ALGOL or as a piece of code. 

1 In this section we describe mainly the syntax of procedure declarations. For 
the semantics see Chapter VII. 
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Procedures fall into two subclasses: The ordinary procedures, which 
are called by procedure statements, and function procedures, which are 
called through function designators. 

41.1. Examples 

41.1.1. Declaration of an ordinary procedure which is modelled after 
the bisection routine given in 30.5.5: 

« procedure bisect (eps, f, a, b) ; 

real a, b, eps ; real procedure f ; 
begin 

real x; 
for x:= (a+b)J2 

{Procedure identifier, 
formal parameter part. 
Specification part. 

while b-a> eps A x =l= a A x =l= b do 
if f(x) < 0 then a:= x else b:= x 

end bisect». 

Procedure body. 

41.1.2. Ordinary procedure without formal parameters: 

«procedure max; 
if x<y then 
begin 

real z ; 
z:=y; y:=x; x:=z 

end». 

Procedure identifier. 

41.1.3. Function procedure which 
point x, y from the origin: 

computes the distance of a given 

«real procedure rad(x, y) ; 

real x, y ; 
rad : = sqrt (xt2 + yt2)). 

41.2. Syntax 

{
Procedure identifier, 
formal parameter 
part. 
Specification part. 

Procedure body. 

41.2.1. The declaration of an ordinary procedure has one of the follow­
ing basic syntactic forms (for structurized forms d. 41.2.3 and 44.4.3): 

«procedure I ; 5», 

«procedure I(F, F, ... , F) ; V C 5», 

with the following constituents: 

I denotes the procedure identifier, i.e. the name of the pro­
cedure to be declared. 
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(F. F •...• F) is the formal parameter part. TheF's are the formal parameters, 
i. e. identifiers denoting the formal operands of the procedure 
(according to SR. item 5.4.3. the F's must be different from 
each other). 

V represents the value part. which is either empty or has the 
syntactic form 

c 

«value F. F • ... , F ;». 

where the F's are identifiers selected from the formal pa­
rameter part. 
represents the specification part. which is either empty or 
consists of a sequence of specifications (in juxtaposition). 
each of which has the form 

«Z F. F • ...• F ;». 

Here the F's are again identifiers selected from the list of 
formal parameters!, and Z denotes one of the 14 possible 
specifiers: 
«reah. (<integer». «Boolean». «array». «real array». 
(<integer array». «Boolean array». (dabel». «switch». 
«procedure». «real procedure». (dnteger procedure». 
«Boolean procedure». «string». 

5 stands for the procedure body. which may be an arbitrary 
statement or a piece of code (for the latter see 47-3). 

The construction (d (F, F, ... , F) ; VC» is sometimes called the procedure 
heading. 

41.2.2. For a function procedure the syntactic form of the declaration is 
the same. except for the following deviations: 

a) An additional declarator «reah. «integer» or «Boolean» must 
be placed in front of the procedure declaration. which must thus begin 
with « real procedure ... » or « integer procedure ... » or « Boolean 
procedure . .. ». 

b) The procedure identifier must occur within the procedure body 
as assignment variable in at least one assignment statement just as if 
it were a simple variable. but it may not occur otherwise in the procedure 
body. 

41.2.3. Structurized forms of the formal parameter part 2• It is allowed to 
replace any of the commas separating the formal parameters in the formal 

1 According to SR. item 5.4.5. every formal parameter F of the procedure 
must be quoted exactly once in the specification part. 

2 For the special structurisation recommended for procedures to be published 
in this Handbook, see 44.4.3. 
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parameter part by a syntactic object 

«)XX ... X: (», 
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where the X's represent arbitrary letters. This optional device allows 
grouping the formal parameters into categories. As an example, the 
declaration for procedure bisect (41.1.1) could be modified into 

« procedure bisect (eps, f) trans: (a, b) ; ... ». 

Such a modification does not influence the properties of the proce­
dure, provided the order in which the formal parameters are listed is 
maintained. 

41.2.4. Syntactic diagram: 

0------1 iden/ifier r----1 procedure identifier 

0------1 idenl/fier r----1 .siring idenfif/er 

0----1 idenlifier ~ l(Jbe! idenlifier 

vari(Jble idenlifier rcf. J8.2) 

(Jrr(JY idenlifi8r (cf J8.2) 

/176e/ idenlifier 

swilch idenlifier (cf.'fO. 2) 

procedure identifier f----------l 

slr/n!! idenl/fier 

1----.--1 formal,lJ(Jrometer I----r---l 
formal 

1--..,.....--lpar(Jmeler 
pari 

)---0 ...... --1 I elf e r ( c r. 7.1 ) 

Fig. 35 a 
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formu/ purf1meler 

1--..,....-1 specificallon 
pari 

..---_-ll slalemenll--L __ - .... 
I (et: US) I 

proeeriUI'B body I 
I code I '----lL (ef.' H7) 11--___ --' 

Fig.35b 

for orriinury 
procedllre 

(procerillre wllflolll pO'f'{lmeler,rJ 

for lUnd/on 
proeerillre 

Fig.35 c 
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41.3. Semantics 

The semantics of procedure declarations will be treated in great 
detail in § 44. Here we mention only that a procedure declaration serves 
to give corresponding procedure calls (function designators, procedure 
statements) a meaning, but itself never causes the execution of any 
operations when it is encountered during execution of a program. In 
addition, it is impossible to jump from outside into a procedure declara­
tion (even if the procedure body is not a block). 

Furthermore, the formal parameters of a procedure declaration do 
not represent true quantities as identifiers usually do, but are merely 
designations given to formal objects (the formal operands of the proce­
dure) which have a meaning only inside the procedure declaration. 

§ 42. Semantics of Blocks 

At the beginning of a block, one or more declarations may be given, 
e.g. 

«begin 
real t ; 

integer i ; 
integer array b [O:n] ; 

start: 
b [0] : = entier (x) ; 
t:=x-b[O]; 
for i:= 1 step 1 until n do 
begin 

t:= 1/t ; 
b [i] : = entier (t) ; 
t:=t-b[i] 

end; 
comment Output of partial denominators of continued fraction ap­

proximation for the given real number x using the standard 
I/O procedure outarray (d. Chapter VIII) ; 

outarray(1, b) 

end ot bloch. 

These declarations declare certain identifiers (here t, i, b) to represent 
certain quantities within that block. Furthermore, all destination labels 
in the block (here only start) also act like declarations which declare 
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the label identifiers as names of spots in the program. All these quantities 
exist only within the block, whereas the other quantities occurring in 
that block (in the above example x, n, entier, outarray) exist also outside. 

42.1. Block structure 

A block in an ALGOL program may contain other blocks which in 
turn may contain further blocks in their interior, and so on. Thus a 
block B has a structure which may be visualized by a diagram in which 
ordinary ALGOL text is represented by horizontal lines, but the begin's 
and end's of the various blocks (but not those of ordinary compound 
statements!) are indicated by a step upwards, respectively downwards: 

Fig. 36 

- II- } rei olive =; block 
_! levels 
-0 orB 

The various levels in the above diagram correspond to what we call 
the block levels: The level 0 is called the environment of block B; it is 
that block level into which B is embedded. Level 1 is the block floor 
of B; it is the lowest block level inside B and contains the declarations 
for the block. The terms environment and block floor are to be understood 
relative to the block to which they apply; for instance, the floor of 
block B is at the same time the environment for the subblocks C and D, 
while the environment of B is the floor of the smallest block containing B. 

These terms apply also to the whole program (provided it is a block) ; 
we then speak of the program floor, block levels of the program, etc., 
and these are indeed absolute terms. 

42.2. Scope of a quantityl 

42.2.1. Every quantity occurring in an ALGOL program has a scope, that 
is, a region (of the program) in which the quantity exists and can be 
referred to by its identifier. Outside the scope the quantity is non­
existent and cannot be used; its identifier is either meaningless or refers 
to another quantity. 

42.2.2. The concepts local,global and suppressed. If an identifier I appears 
either as destination label in the floor of block B or is declared 2 there, 

1 The rules given here apply so far only outside procedure declarations; in § 44 
we shall give additional rules which cover the most general case. 

2 To be precise, an identifier is "declared" in the floor of a block B if it appears 
in a declaration in that block floor in one of the positions which are denoted by I 
in the syntactic forms given in 38.2, 39.2.1, 40.2, 41.2.1. 
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it represents a quantity Q which exists only inside B and is called local 
to B. Usually the scope of such a quantity Q is the full block B, as is 
the case for the quantities t, j, b declared in the above example. However, 
if B has sub blocks, the following is more precise: 

The quantity Q exists at least in the floor of the block B to which 
it is local. For the higher block levels we can decide the existence 
of Q by recursive application of the following rule: If Q exists in the 
environment of a sub block Bx of B, then either 

a) The identifier I of Q is not declared or used as destination label 
in the floor of Bx; in that case Q is called global to Bx, which 
is to say that it exists also in the floor of Bx. 

b) The identifier I of Q is declared or used as destination label in 
the floor of Bx; then Q is called suppressed in Bx, which means 
that it is nonexistent throughout Bx because the identifier I is 
used there as name of another quantity Q*. 

The following diagram exhibits the various possibilities: 

blook!: I io5' declared or uo5'ed as deo5'linal/on label 
I repre.senls quantify Q local 10 block 1 

block2: I neilher declared nor uo5'ed 005' deslinotion label 
Q is global fa block 2 

block J: I ne/llier declared nor used as des/inalion label 
Q is global 10 block J 

bloc/rq.: I declared or used 005' des/inolion label 
Q is J'uppreo5'J'ed /n block lI-
I denoles quonlily Q* local 10 block If 

blockS: I neilhel' declared nof' used oS' deslina/ion label 
Q* global 10 block 5 
Q. io5' none%islenf 

block 6 : I declol'ed Of' used as des/ina/ion label 
Q* Is 05' uppreoSo5'ed in block C 
I denoteS' quonl/ly Q** 10 col 10 block C 
Q /05' nonex/slenl, Q*/s non8)(/sleflt 

Fig. 37 
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42.2.3. To sum up, the scope 01 a quantity Q is exactly the block B to 
which it is local, minus all subblocks in which the identifier I of Q is 
declared again or appears as destination label, and - for the present -
also minus the interiors of all procedure declarations contained in B 
(see however 44.5.1). 

In the following (utterly unrealistic) piece of program the scopes of 
the various quantities 

1) label d ; integer m ; 
2) real x, z ; label al ; 
3) real y ; label e ; integer n ; 
4) procedure x ; 
5) integer arrayal; labell, z ; 
6) switch x ; 

are indicated on the right side (+ denotes existing quantities, - sup­
pressed quantities and 0 otherwise nonexistent quantities): 

«d: begin 
al: real x, y, z; integer n ; 

x:=1; y:=2.0tm; n:=mt2; 
e: begin 

z: 

integer array al[i: 2 xn] ; 
procedure x (n) ; 

value n; integer n ; 
begin 

integer z ; 
for z:= 1 step 1 until n do 

al[z] := z 
end x ; 

if y> n then goto e ; 
x(n-1) ; 

I: begin 
switch x:= d, e, z, I; 
y:=al[n+1]:=al[n-1] ; 
if al[1]>y then goto x[m] 

end I; 
y:= al[n] ; 

end e; 
m:= entier(ln(y)) 

end d». 

123456 

+++000 
+++000 

+-+++0 

For scopes 
see 44.5 

+-+++0 
+-+++0 

+-+-++ 
+-+-++ 
+-+-++ 

+-+++0 

+++000 
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42.2.4. Remark: According to what has been said above, it may happen 
(and is allowed) that an identifier I of a quantity local to a block E is 
declared again or used as destination label in the floor of a subblock Ex 
of E. However, this should not be considered as a regular programming 
practice, though it cannot always be avoided without undue effort. 

42.2.5. Scopes of standard-functions and -procedures. The 10 standard 
functions and the 6 standard I/O-procedures are also regular quantities 
(procedures) having scopes like any other quantity. As a rule, the scope 
of these standard quantities encompasses all ALGOL programs, but again 
with the possible exception of certain subblocks. 

An immediate consequence of this is that it is allowed (but not re­
commended) to write a block as follows: 

«begin 
real array sin [0: 100] ; 
switch inreal : = take, put, store, get; 

exp: ... end». 

However, if this is done, the standard functions sin, exp and the 
standard I/O-procedure inreal are suppressed in this block and cannot 
be used there; indeed, a function designator «sin (z)) occurring in this 
block would be undefined. 

42.3. Restrictions for declarations 

42.3.1. Whereas we have the freedom to declare the same name several 
times in one program, we cannot declare it several times in the same 
block floor. The latter is forbidden by the following rule: 

No identifier may be declared more than once in the same block 
floor, nor be declared and at the same time be used as destination 
label in a block floor, nor be used more than once as destination 
label in the same block floor. 

In the example below three violations of this rule occur, one of them 
being due to the rule given in 9.2.4, which says that e.g. label33 and 
label34 are not distinguished in the subset. On the other hand, no conflict 
arises because the identifier c is declared and used as formal parameter 
in the same block head: 

«begin 

label33: 
label34: 
beta: 

real a, beta, c ; 
procedure neg (c) ; integer c; c:= -c ; 
switch a : = pale, sleek, quick, sleepy ; 

11 Rutishauser, Description of ALGOL 60 



162 VI. Declarations 

42.3.2. A further rule (see SR, item 5) says: 
Except forlabels, a quantity Q cannot be used1 between the «begin)} 
of the block to which Q is local and the semicolon that terminates 
the declaration for Q. 
This rule is of importance only in connection with procedures and is 

therefore exemplified in Chapter VII; in fact, the only other examples 
to which it would seem to apply are of the type 

«begin 
array x[1 :n] 
integer n ; 
... )}, 

but this is already forbidden by 39.3.5. 

42.4. Dynamic effects of declarations 

42.4.1. The only declarations which, upon execution of the program, 
cause the execution of operations on the ALGOL level are the array 
declarations; indeed, for these the array bounds must be obtained by 
evaluation of the subscript expressions in the bound pairs at the moment 
of entry into the block. These array bounds then remain unchanged during 
the whole execution of that block, even if the variables used to calculate 
them change their values. 

42.4.2. Except for the evaluation of array bounds, the declarations at 
the beginning of a block B do not incite any actions on the ALGOL level 
upon entry into the block but solely state that in block B certain 
identifiers will denote new quantities, while the external quantities (if 
any) which used the same names outside B become suppressed. On the 
other hand, the declarations at the beginning of a block will initiate 
certain operations on the object program level; for instance, the storage 
reservations for all quantities declared in that block will be made upon 
entry into the block. 

After these preparations the execution of the statements of the block 
begins; it should be recognized, however, that at that moment the values 
of all local simple variables and local arrays of the block are still un­
defined. This has the consequence that a piece of program like 

<<. •• ;m:=2; 
k:=k+1; 

1 Use of a quantity Q means any occurrence of its identifier, with the exception 
of the position in which the identifier is declared (see footnote 2 on p. 158). Further­
more, the occurrence of a function procedure identifier as assignment variable in 
the procedure body, as required by the rules given in 41.2.2.b, is not a "use" of 
the function procedure but a constituent of its declaration. 
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begin 
integer k ; 
p:= kt2 +mt2 ; 
... ) 

is always meaningless because the k involved in the expression ktz + mt2 
is still undefined when it comes time to evaluate the expression; in fact, 
this k is a new variable entirely different from the k occurring outside 
the block. 

42.4.3. Exit from a block occurs as soon as the execution of the statements 
in the block proceeds to the « end) of the block or if a goto-statement 
is encountered which points to a destination label outside the block 
(including a destination label in front of the block). In either case all 
quantities local to the block lose their existence, and their values (if 
they had any) are destroyed l . What actually occurs on the object pro­
gram level at that moment is that all storage reservations for the block 
are cancelled again; the storage space thus set free is used automatically 
for subsequent storage reservations. 

At the same time the quantities which were suppressed in that block 
come into existence again and resume the values they had at the time 
of entry into the block2• 3, e.g.: 

« 

k:=k+1 
begin 

integer k ; 
k:=mt2-1 

end; 
p:= kt2+ mt2 ; 

) . 

{ "outer" variable k assumes a 
value X. 

I " outer" variable k suppressed, k re­
presents a new variable called the 
" inner" variable k. 

(
"inner" variable k undefined, 
"outer" variable k has again value X, 
which is used in this expression. 

1 In most compilers this destruction is not actually performed upon exit from 
a block but will eventually take place through an assignment statement which over­
writes the value. It may thus occur that the corresponding object program still 
has access to such values after exit from the block; as a consequence, correct 
results may be produced by an incorrect ALGOL program. 

2 Under certain circumstances (d. 45.2.4) the value of a suppressed quantity 
may change during its suppression. 

3 The reader should be aware of the fundamental difference between exit from 
a block to which a variable V is local and entry into a subblock in which V is 
suppressed. In the second case the value of V is not destroyed, and the storage 
reservations for V are not cancelled. 

11" 
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42.4.4. In case a block is left and re-entered several times, the storage 
reservations are made anew for every entry into the block and are 
cancelled again upon every exit. Thus in a case like 

«for k : = 1 step 1 until n do 
begin 

array c[O:kJ ; 

the declarations given at the beginning of the block are activated anew 
for every repetition of the controlled statement, but the declared quan­
tities lose their existence and their values again every time the « end » 

of the block is met. Accordingly, in the above example the values of the 
components of the array c cannot be saved from one execution of the 
controlled statement over into the next (see, however, footnote 1 on 
p.163)· 

42.5. Operands of a block 
42.5.1. The operands of a block B are defined as those quantities existing 
outside the block which are involved in the execution of the block. Ob­
viously the quantities global to B are operands of B provided they are 
actually used inside B. 

In the example 

«begin 
real x, y ; 

z: begin 
real t ; 
t:= x; 
x : = sqrt (t) ; 

end z ; 

end» 

x, y, sqrt and the label z (as far as we can see) are global to block z, 
but only x and sqrt are operands since y and z are not used in block z, 
which on the whole is equivalent to the operation «x: = sqrt(x) ». 

42.5.2. Hidden operands. A block may have hidden operands: Indeed, 
if a procedure P is operand of block B, then - according to the environ­
ment rule for global parameters (d. 44-3.2) - the global parameters of 
P are also involved in the execution of B, hence operands of B. We call 
these hidden operands of B because they cannot be found by inspection 
of block B but only by inspection of the declaration for procedure P, 
which is given somewhere outside B. 
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Consider for instance the following piece of program: 

«begin 
real x ; 
procedure nix; 

begin x:= 0; goto out end; 

abc: begin 

out: 

integer x, out; 

mx 
end abc; 

end». 

} Declaration of 
procedure nix. 

{ C~ll of procedure 
n~x. 

Here the real type variable x and the label out are - although suppressed 
in block abc - (hidden) operands of block abc since procedure nix is 
called in that block, and x as well as out are global parameters of proce­
dure nix. 

42.5.3. The operands of a block B fall into the following four categories: 
a) Arguments: Single variables and arrays, the values of which in­

fluence the execution of the block without being changed themselves, 
and procedures (because these also influence the execution of the block). 

b) Results: Simple variables and arrays to which during execution 
of the block new values are assigned without making use of the values 
they had upon entry into the block. 

c) Transients: Simple variables and arrays which have properties of 
both arguments and results: Their values upon entry to the block in­
fluence the execution of the block, but are themselves changed during 
execution of the block. 

d) Exits: Labels referring to destinations located outside Band 
switches which are declared outside B. In both cases the only operation 
that can be due to such an operand is a jump from inside B to a desti­
nation outside Bl, thus terminating the execution of B. 

These categories are not distinguished syntactically, nor has the pro­
grammer to take measures such as treating quantities of the four cate­
gories differently, but this classification is of some importance for dis­
cussing the properties of a procedure. 

§ 43. Entire Programs 
An ALGOL program is a piece of ALGOL text which describes a com­

plete computation including the transfer of initial data from outside 
1 For switches this follows immediately from the environment rule for switches 

(d. 40.4.2). 
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into the computer and of the final results from inside the computer to 
the outside world. 

43.1. Rules for ALGOL programs 

43.1.1. An ALGOL program must have the syntactic form of a block or 
compound statement. 

43.1.2. With the exception of labels, formal operands, standard functions 
and standard I/O-procedures, all quantities occurring in an ALGOL pro­
gram must be properly declared. 

43.1.3. For array declarations given at the very beginning of an ALGOL 
program (in the program floor), the subscript expressions L, U which 
define the array bounds can only be explicitly given values. 

43.1.4. If an ALGOL program is not a block, then 43.1.3 must hold for 
the array declarations given in the floor of the biggest block contained 
in the program. 

43.1.5. All begin's and end's of an ALGOL program must form a com­
plete begin-end-structure, i.e. to every « begin» there must exist exactly 
one corresponding « end» (and vice-versa) such that the two delimit a 
compound statement or block. It is advisable to check every ALGOL 
program carefully for this property, e.g. by scanning the program and 
stepping a counter one upwards before every «begin» and one down­
wards after every «end» (excepting of course begin's and end's in 
comment situations). The begin-end-structure is correct if and only if 
the counter comes down to zero after the final «end» but never before. 
This method would readily disclose the following begin-end-structures 
as being incorrect: 

«begin begin end; begin end end; begin end», 
«begin begin end; begin begin end; begin end end». 

43.1.6. The final « end » of an ALGOL program has the dynamic effect of 
a stopl. 

43.2. Examples 

For the examples to be given in this section we assume for the moment 
the existence of procedures line, print, read, prtext as if they were standard 
procedures 2, the calls of which have the following properties: 

1 There is no special" stop statement" in ALGOL 60 (in contrast to ALGOL 58). 
Instead, one places a labelled dummy statement in front of the final ('end,) of 
the program and jumps to it. 

2 These are not the standard I/O-procedures of ALGOL 60 (for which see Chapter 
VIII) but are just assumed for the purposes of § 43. They can be expressed, how­
ever, with the aid of the true standard I/O-procedures (d. 49.5). 
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causes a line feed of the printer. «line ) 
«print (E) ) prints the value of the arithmetic expression E with a 

certain standard format. 
«read (V))) reads the next number from the input medium and assigns 

it to the real type simple variable V. 
«prtext (' .. .'))) prints the text enclosed between the string quotes. 

43.2.1. «begin line; print (sqrt (3)) end) is a complete ALGOL program, 
the action of which is the printing of the value V3. 
43.2.2. The following program prints a function table; for every x=O.01, 
0.02, ... ,99.99, 100.00 the values of x and the values of the functions 
sin, cos, sqrt, exp, ln, arctan for this x are printed on one line: 

«begin 
integer k ; 
for k : = 1 step 1 until 10000 do 
begin 

line; 
print(k/100) ; 
print(sin(k/100)) ; 
print(cos(k/100)) ; 
print(sqrt(k/100)) ; 
print(exp(k/100)) ; 
print (In (k/100)) ; 
print(arctan(k/100)) ; 

end 
end). 

43.2.3. Solution of the quadratic equation ax2 +bx+c=0 with con­
sideration of all possible cases: 

«begin 
real a, b, c, d, e, p, q, x, Y ; 
read(a) ; read(b) ; read(c) ; 
line ; line ; line ; line ; 
print(a) ; print(b) ; print(c) ; 
line; 
if a=O then 

cl: begin 
if b = 0 A c = 0 then prtext (' arbitrary u x') 
else 

if b = 0 A c =f= 0 then prtext (' no u solution ') 
else 
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c2: 

end c1 
else 

VI. Declarations 

begin 
prtext (' single u solution u u u ') ; 
print (- cjb) 

end c2 

c3: begin 

c4: 

c5: 

p:= bja ; 
q:= cja ; 
if q= 0 then begin e: = abs (pj2) ; d: = 0 end 
else 

if abs (P) ~ 1 then 

begin 
d:= 1j4-qjpjp; 
e:= sqrt (abs (d)) xabs(p) ; 

end c4 
else 

begin 
d:=qx(pjqxpj4-1) ; 
e := sqrt (abs (d)) 

end c5 ; 
if d~O then 

c6: begin 
x:= -pj2- (if p>O then e else -e) ; 
y:= if x=O then 0 else qjx ; 
prtext (' real u solutions u u u ') ; 
print(x) ; 
print(y) 

end c6 
else 

c7: begin 
x:= -pj2; 
y:= e; 
prtext (' complex u solutions u u u ') ; 
print(x) ; 
prtext (' u u u + i u ') ; 
print(y) 

end c7 
end c3 ; 

line ; line ; line ; line ; 
end». 
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No jumps are needed in this program because the if-then-else-struc­
ture is such that after printing text and solution (if any) the computation 
proceeds automatically to the « end» of the program where it comes to 
a stop. 

As an example, the output of this program for a=2, b=-5, c=2 
would be 

1
2.00000000 
real solutions 

- 5.00000000 
2.00000000 

2.00000000 1 

5 .0000 000010-1 

43.2.4. Inversion of a matrix of arbitrary order. Since in this problem 
a matrix of arbitrary order n will occur, it must be declared as «array 
a [1 : n, 1 : n J », where the value of n will be read from an input medium. 
However, such a declaration can never appear in the program floor (see 
43.1.3,39.3.5) but only at some higher block level. Thus we shall have 
at least two block levels. 

The method we choose for the inversion is essentially the Gauss­
Jordan method [29J, but for simplicity we use the diagonal elements 
as pivot elements, namely a [P, p J as pivot in the p-th elimination step. 
As a consequence, the basic formulae of the process (formulae (5) in [29J, 
corresponding to statements alpha, beta, gamma, delta in this program) 
are used with p=q: 

« begin 
real x ; 
integer n, i, j, P ; 
read(x); n:= x ; 
begin 

array a[1 :n, 1 :nJ ; 

comment Follows input of the matrix elements a [i, jJ one by one; 
for i:= 1 step 1 until n do 

for j:= 1 step 1 until n do 
begin read (x); a [i, jJ : = x end; 

comment Follows inversion of matrix A "on the spot", i.e. the ele­
ments of the inverted matrix are again stored as a [i, jJ ; 

for p:= 1 step 1 until n do 
loop: begin 

if a[p,p]=O then 
begin prtext (' failure ') ; goto ex end; 

alpha: a[p,pJ:= 1/a[p,p] ; 

beta: for j:= 1 step 1 until P-1, P+1 step 1 until n do 
a[p, jJ:= -a[p, jJ xa[p, PJ ; 
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delta: fori:= 1 step 1 untilp-1,P+1 step 1 until n do 
for f:= 1 step 1 until P-1, P+1 step 1 until n do 

a [i, f] : = a [i, iJ + a [i, P] X a [p, iJ ; 
gamma: for i:= 1 step 1 until P-1, P+1 step 1 until n do 

a[i,p]:= a[i,p] xa[p,p] 
end loop; 

comment Follows output of inverted matrix column by column; 
out: for f:= 1 step 1 until n do 

begin 
line; 
for i:= 1 step 1 until n do 

begin line; print (a [i, f]) end; 
end f ; 

ex: end 
end 01 program». 

43.3. Block structure and storage economy 

The possibility of declaring quantities not only at the very beginning 
of a program but also at higher block levels, can be used to keep storage 
requirements at a minimum. In order to achieve a saving, array declara­
tions are delegated as far as possible to higher block levels (which may 
have been constructed extra for this purpose). True, an appreciable 
saving results only if we succeed in finding at least two disjoint blocks 
in each of which at least one fairly big array is declared, e.g. 

«begin 
integer n ; 
array a[1: 50,1: 50] ; 

x: begin 
integer array b [1: n, 1: 2 xnJ ; 

end x; 
y: begin 

array c[ -n:n, 1 :nJ ; 

endy; 
end». 

Here, 2501 positions are used throughout the program 1 for n and the 
array a, while 2n2 further positions are used only in block x, and 

1 Without counting storage used by the object program for organisational 
purposes. 



§ 43. En tire Programs 171 

2n2+n positions only in block y. The total storage requirement for all 
visible quantities is therefore 2n2+n+ 2501. However, for the program 

«begin 
integer n ; 
array a[1: 50,1: 50J ; 

x: begin 
integer array b [1: n, 1: 2 xnJ ; 

z: begin 
array b[ -n:n, 1 :nJ ; 

end z 
end x 

end», 

the storage reserved for array b which is suppressed in block z is not 
set free after entry to this block, and therefore the total storage require­
ment is 4n2+n+2501 in this case. 
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Procedures 

A procedure is an operator which has the operational characteristics 
of a block and therefore also the same classes of operands (arguments, 
results, transients, exits) as a block. Unlike a block, however, some of 
the operands of a procedure may be exchangeable. 

Procedures are either fixed constituents of the language (standard 
functions and standard I/O-procedures) or defined by procedure declara­
tions. 

§ 44. Procedure Declarations II 

The following text describes the semantics of ordinary procedures, 
hut with the amendments to be given later in § 46, it is also valid for 
junction procedures. 

44.1. Introduction 

Given an arbitrary statement 5 which performs a certain action, we 
can easily turn it into the declaration of a procedure which performs 
exactly the same action. Take for instance the statement 

«begin 
integer k ; 
s:= 0; 
for k:= 1 step 1 until n do s:= s + x[kJ xy[kJ 

end)}, 

which computes the inner product s of given vectors x [1 : nJ, y [1 : nJ. 

44.1.1. By placing an appropriate procedure heading in front of it, e.g. 

«procedure inner; 
begin 

integer k ; 
s:=O; 
for k:= 1 step 1 until n do s:= s +x[kJ xy[kJ 

end)}, 

we obtain immediately the declaration of a procedure inner having the 
property that a corresponding procedure statement <<innen> causes exe­
cution of the originally given statement and thus computes the inner 
product s of the two vectors x [1 : nJ, y [1 : nJ. In this procedure the four 
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names n, x, y, s always denote the same quantities (but their values may 
of course change) which therefore are predetermined operands of the 
procedure. 

44.1.2. A programmer may find little use for a procedure which cannot 
compute inner products of vectors with names other than x and y. In 
order to remove this restriction, the above procedure declaration can 
be modified into 

«procedure inner (x, y) ; array x, y ; 
begin 

end». 
) procedure body as in 44.1.1. 

Here x, yare formal parameters, i.e. identifiers representing only 
formal operands of the procedure (the true operands being designated 
only upon call of the procedure). In other words, the procedure can 
now be used to compute inner products of arbitrarily named vectors; 
for instance, the procedure call (<inner (a, b)) will compute the inner 
product s of the vectors a [1 : n J, b [1 : n J in precisely the same way as 
the procedure body operates on x and y. 

On the other hand, nand s are still predetermined operands; to 
compute the inner product x of the vectors p [1 : k J, q [1 : k J, for instance, 
the sequence 

would then be required. 

«n:= k; 
inner(p, q) ; 
x:= s» 

44.1.3. A still more flexible procedure is obtained if also nand s are 
listed as formal parameters!: 

« procedure inner (n, x, y, s) ; value n ; 
real s ; integer n ; array x, y ; 

begin ) 
procedure body as in 44.1.1. 

end». 

After these modifications we can use procedure inner to compute inner 
products of arbitrary vectors with arbitrary upper subscript bounds and 
can assign the resulting value to an arbitrary variable. As an example 

«inner (k, p, q, x)) computes the inner product x of the vectors 

«inner (10, z, z, zeta)) 
P[1:kJ, q[1:kJ, while 

computes the inner product zeta of z [1: 10J with 
itself, etc. 

1 For the meaning of <,value n ;» see 44.6, 45.3.4. 
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44.2. Operands of a procedure 
The operands of a procedure, i.e. the quantities involved in its exe­

cution, are essentially the operands of the fictitious block which - if 5 
stands for the procedure body - is defined as the construction 

«begin real re ; 5 end)l,2. 

Indeed, execution of a procedure means essentially execution of this 
fictitious block, as we shall see later. However, it is one of the most 
important properties of procedures that their operands - besides being 
distinguished as arguments, results, transients and exits - fall into 
three categories, namely3 

a) Those operands of the fictitious block whose identifiers are not 
quoted in the formal parameter part are called global operands of the 
procedure. The latter are operands of a procedure in the same sense as 
quantities are operands of a block. 

b) Those operands of the fictitious block whose identifiers are listed 
in the formal parameter part 4 are called formal operands of the procedure. 
They are exchangeable in the sense that upon a procedure call other 
quantities are designated to be used in place of them. 

c) In addition a procedure may have hidden operands like a block. 

44.3. Rules for global parameters 
44.3.1. A global parameter - that is, the identifier of a global operand -
represents the same quantity inside the procedure body as outside in 
the environment of the procedure declaration. A global operand is there­
fore simply the extension of a quantity which exists outside the proce­
dure. As a consequence we have 

44.3.2. The environment rule for global parameters: 
If the identifier I is global parameter of a procedure, then a (true or 
formal) quantity Q with that identifier must exist in the environment 
of the procedure declaration, and it is this Q which in a call of the 
procedure is meant by the identifier I. 
I The declaration of the fictitious variable re serves solely to make this piece 

of program a block. 
2 In case S is already an unlabelled block, this artificial construction is un­

needed and we could take S instead. However, the fictitious block is necessary 
to cover the most general case, namely in order to avoid a destination label inside 
or in front of S from being mistaken for an operand of the procedure (which it 
may never be according to 5.4.3 of the RAR). 

3 We have chosen the terms global and formal operands to denote the quantities, 
whereas global and formal parameters are reserved to denote their identifiers. 

4 Usually only quantities actually occurring in the procedure body are quoted 
as formal operands, but this is not a strict rule. Indeed, circumstances may force 
a programmer to introduce formal operands which are not actually used in the 
procedure body (dummy operands). Examples of this kind occur in § 48. 
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According to this rule, a global parameter acts like a thread which 
links the procedure declaration permanently to its environment; indeed, 
a procedure which has global parameters is only fully defined if it is 
embedded into an ALGOL program in which the global operands are 
properly declared. 

44.3.3. Consider, for instance, procedure inner as declared above in 
44.1.1. It has the global operands n, x, y, s because these quantities 
appear inside the procedure body, neither being local to it nor being 
quoted as formal operands. As a consequence, this declaration can appear 
only at a place where quantities n, x, y, s of appropriate kinds (d. 9.1) 
and types exist, e.g.: 

«begin 
real s ; integer n ; 
n : = entier (zt2 + 1) ; 

11: begin 
array x, y[1 :nJ ; 
procedure inner; 

begin ) 
procedure body as in 44.1.1. 

end; 

end II 
end». 

Indeed, the environment of procedure inner is the floor of block ll, and 
in the floor of the latter the required quantities n, s, x, y correctly exist. 

44.3.4. On the other hand, the following is an incorrect embedding: 

«11 : begin 
real s, p, q, x, y ; 
integer n ; 
procedure inner; 
begin 

end inner; 
n:=z+1; 

l2: begin 

) pmcedm, body as ill 44.\.1. 

array x, y [1 : nJ ; 

end l2 ; 
end II ». 
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The environment of procedure inner is the floor of block 11, but since 
in this floor no arrays x, y can exist as would be required by the environ­
ment rule, the above piece of program is incorrect. The situation could 
be corrected, however, by moving the declaration for procedure inner 
to the floor of block 12. 

44.3.5. On the ordering of declarations. If a procedure and some of its 
global operands (if any) are declared in the same block head, then the 
rule 42,J.2 requires that the declarations for the global operands are 
placed before the procedure declaration. Thus, if the incorrect example 
given in 44,J.4 is corrected by moving the declaration for procedure inner 
into block 12, it must be inserted there after the declaration for the two 
arrays x, y. 

A further example: 

«begin 
integer n ; 
procedure nix; n:= 0 ; 
procedure alto (Ph) ; label ph ; 

begin nix; goto Ph end; ... >}. 

Since obviously nix is a global operand of procedure alto, and n is a 
global operand of nix, the declarations for these three quantities cannot 
be ordered other than shown in this example. 

44.4. Rules for formal parameters 

44.4.1. A formal parameter of a procedure X does not represent a true 
quantity as identifiers usually do but is only a designation given to a 
formal quantity (formal variable, formal array, formal string, formal 
label, formal switch, formal procedure) which exists only inside the 
procedure declaration without actually being declared there. 

Moreover, a formal parameter has no connection whatsoever with 
any quantity having the same identifier and existing outside the proce­
dure declaration, and it does not induce any requirements concerning 
the existence of certain quantities outside the procedure declaration as 
global parameters do. 

The attributive formal has the meaning that such a quantity Q 
(except if called by value, for which see 44.6) has no independent exis­
tence as a declared quantity has but is only the representative for an­
other quantity A which ultimately will be used as actual operand in 
place of Q. 
44.4.2. Specifications. Whereas kind and type of a global operand are 
defined through the existence of the same quantity outside the procedure 
declaration, kinds and types of formal operands must be defined in the 
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procedure declaration. To this end we have the specification part 

«Z F, F, ... ,F ; Z F, F, ... ,F ; ... ; Z F, F, ... ,F ;» 1, 

in which the F's are the formal parameters of the procedure and the Z's 
are specifiers (for a complete list of possible specifiers see 41.2.1). 

In the SUBSET the following rule must be observed (see SR, item 
5.4.5) : 

Every formal parameter F of a procedure must appear exactly once 
in the specification part. 

A single specification «Z ~, F2 , ••• , F;, ;» resembles a declaration some­
what; it declares the formal operands ~, ... , F;, to be of kind and type 
«Z ». Unlike declarations, however, specifications contain only the naked 
identifiers and therefore do not define additional properties such as sub­
script bounds of a formal array or the complete definition of a formal 
procedure (in fact, the absence of such additional information about 
formal operands adds to the flexibility of the procedure concept). On 
the other hand also formal labels and formal strings must be specified. 

For procedure inner as declared in 44.1.3 the specification part is 

« real s ; integer n ; array x, y» , 

which says that x, y represent real arrays while nand s are simple 
variables of integer and real type respectively. This means that the 
actual operands to be used later in place of x, y, s must have these 
same respective kinds and types (this is not required for n since n is 
called by value, for which see 44.6). 

44.4.3. Structurized procedure headings. As already indicated in § 41 and 
shown by some of the examples, the formal and actual parameter parts 
may be structurized. For procedure declarations to be published in the 
later volumes of this Handbook or distributed by the ALCOR group, it 
is recommended to structurize the formal and actual parameter part of 
procedure declarations and the corresponding calls in such a way that 
the four categories of operands (arguments, transients, results, and exits) 
are exhibited for the benefit of the reader. 

The formal parameter part will therefore have the following syntactic 
form: 

«(F, F, ... , F) trans: (F, F, ... , F) res: (F, F, ... , F) exit: (F, F, ... , F) ». 

may be missing may be missing may be missing 

1 For procedures which have no formal parameters the specification part is 
empty. 

12 Rutishauser, Description of ALGOL 60 
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As an example, the formal parameter part in 

«procedure mica (a, b, c) trans: (d, e) res: (I) exit: (g, h) ; 
real c ; integer e ; array f; Boolean array d ; 
label g ; switch h ; procedure b ; string a ; ... >} 

indicates that procedure mica has the following operands: 

1) String a, procedure b, and the real variable c are arguments. 
2) Boolean array d and the integer variable e are transients. 
3) The real array f is result. 
4) Label g and switch h are exits. 

For corresponding calls the same structurization of the actual pa­
rameter part is recommended (but not strictly required), e.g. 

«mica (' 012 up', equ, v) trans: (d, ec) res: (Ph) exit: (arica, pt) >}. 

Note that since all formal operands of a function procedure must be 
arguments, the structurization reduces for these to the first group. 

44.4.4. Predetermined versus exchangeable operands. From what has been 
said above, it would seem that it is always an advantage to quote the 
operands of a procedure in the formal parameter part. Indeed, a proce­
dure which has global operands is always somewhat hampered in its 
applicability since the global operands have predetermined names and 
must comply with the environment rule, while procedure declarations 
with only formal operands (so called independent procedures, for which 
see 47.1) are not linked to a specific environment but may be inserted 
into any block head of a program. 

On the other hand, it must be pointed out that it serves no purpose to 
quote operands of a procedure as formal unless it is intended to make use 
of their exchangeability or to avoid the need for observing the environ­
ment rule for global parameters. To the contrary, the higher flexibility 
of formal operands must be paid for ,with a somewhat longer computing 
time as compared to global operands. It is therefore recommended to 
make operands global where they are predetermined by their nature 
and no conflict with the environment rule must be feared. 

As an example, if at many places in a program the variables a, b, c, 
d,g[1],g[2], ... ,g[n], but always only these, must be set to zero it is 
certainly most appropriate to declare 

« procedure zero; 
begin 

integer k ; 
a:=b:=c:=d:=O; 
for k:= 1 step 1 until n do g[kJ:= 0 

end zero >). 
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Declaring this procedure as 

« procedure zero (n) res: (a, b, c, d, g) ; 
real a, b, c, d ; integer n ; array g ; 

begin ) 
procedure body as above 

end) 
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would have the only advantage that no environment rule need be ob­
served, but it would be less efficient in use. 

44.5. Scopes and procedure declarations 

44.5.1. In § 42 we have excepted the interior of procedure declarations 
from all considerations of scopes. However, there are also rules for scopes 
applying inside procedure declarations. To discuss these, we again resort 
to the fictitious block which we imagine for a moment as being inserted 
in place of the procedure declaration: 

a) Formal operands are considered as being local to the fictitious 
block as if they were declared there. 

b) Global operands are true quantities existing outside the procedure 
declaration, whose scopes extend into the procedure body. 

c) All other quantities occurring in the procedure declaration are 
either local to the fictitious block or to one of its subblocks; these are 
called the internal quantities of the procedure. 

d) In the fictitious block the concepts local, global, suppressed apply 
as usual for true as well as for formal quantities, but procedure declara­
tions contained in the procedure body are again considered separately. 

44.5.2. According to these rules, a formal quantity may be suppressed 
inside the procedure body (though again this is not recommended); the 
suppressor is then no longer an operand but a true quantity local to some 
subblock of the procedure body. Accordingly, the identifier of the sup­
pressing quantity is no longer considered as a formal parameter of the 
procedure. Furthermore, a formal operandF may occur as global operand 
of a procedure Y which is declared in the body of procedure X; in this 
case the scope of F extends into the body of procedure Y. Thus on the 
whole the same peculiarities may occur with formal quantities as with 
true quantities. 

A peculiar situation arises if a programmer erroneously quotes a local 
quantity of the procedure body as formal operand, e.g. 

12· 

«procedure xxx (a, b) ; 
real a, b ; 
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begin 
integer a ; 

end xxx». 

This is not illegal, but since the formal operand a is suppressed through­
out the procedure body, it cannot be involved at all in the execution 
of the procedure and is therefore a dummy operand of xxx. 

44.5.3. However, it is illegal if a formal parameter coincides with a 
destination label that is located outside the biggest block occurring in 
the procedure declaration (e.g. a destination label in front of the proce­
dure body): 

« procedure yyy (a, b) ; 
real a, b ; 

a: begin ... endyyy». 

Indeed, the general rule given in 42.3.1 is violated in that case since 
both the label a and the formal operand a are local to the fictitious block. 

44.6. The value part 

44.6.1. The designer of a procedure has the possibility to list certain 
formal parameters in the value part 

«valueF,F, ... ,F ;»1 

of the procedure heading. The formal parameters (operands) thus quoted 
in the value part are said to be called by value, while all other formal 
parameters (operands) are said to be called by name. 

44.6.2. If a formal operand X is called by value, this has the consequence 
that it is considered as a true quantity local to the fictitious block as if it 
were declared there. Then upon a procedure call, not a quantity, but a 
value (single value or an array of values) is designated as corresponding 
operand, and this value is assigned to X just prior to the execution of 
the procedure. 

44.6.3. The precise effect of calling a formal operand by value can be 
defined only in connection with a procedure call, for which see § 45, but 
let us mention some of the consequences drawn from the rules given 
there: 

a) Only formal operands specified as simple variables or arrays can 
be called by value since only such quantities can have values. 

1 The value part is empty if none of the formal operands is called by value, 
and a fortiori if the procedure has no formal parameters. 
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b) A formal operand X which is called by value is automatically an 
argument of the procedure since any changes that X might formally 
undergo in the procedure body cannot feed back to the outside. 

c) Formal operands intended as transients or results of the procedure 
should therefore not be called by value. Indeed, if procedure inner as 
declared in 44.1.3 were modified into 

« procedure inner (n, x, y, s) ; 
value n, s ; 
real s ; integer n ; array x, y ; 

begin I 
procedure body as in 44.1.1. 

end), 

it would never be possible to get hold of the computed inner product s 
after execution of the procedure. 

d) Formal parameters which represent simple variables and are argu­
ments of the procedure, should always be quoted in the value part. This 
does not modify the effect of the procedure, but it is the only way to 
allow an expression to be used as corresponding actual parameter (see 
SR, item 4.7-3.2). 

44.7. Further examples of procedure declarations l 

44.7.1. 

«procedure polar; 
begin 

r : = sqrt (xt2 + yt2) ; 
phi:= if x=o then 90 xsign(y) else 57.295779513 X arctan (yfx) 

+ (if x~ 0 then 0 else if y~O then 180 else -180) 
end polan>. 

Obviously polar computes the polar coordinates r and phi (the latter in 
hexagesimal degrees but with decimal fractions) of a point whose carte­
sian coordinates are given as x, y. The operands x, y, r, phi are all pre­
determined. 

44.7.2. The following procedure matvec serves to multiply a m X n­
matrix a [1 : m, 1 : nJ with a vector x [1 : nJ yielding a vector y [1 : m l 
Here, all operands m, n, a, x, yare formal: 

{Procedure identifier, formal 
~ procedure matvec (m, n, a, x) res: (y); parameter part. 

value m, n ; Value part. 

integer m, n ; array a, x, y ; Specification part. 

1 Some of these examples are derived from programs given in Chapter V. 
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begin 
real s ; 
integer i, k ; 
for i:= 1 step 1 until m do 
begin 

s:=o ; 

Beginning of procedure body. 

fork:=1step1 untiindos:=s+a[i,kJxx[kJ; 
y[iJ:= s 

end i ; 
end matvec». 

44.7.3. The following example is intended for use with the Adams­
Bashforth method described in 33.2, where a call of a procedure equ 
occurs which serves to define the differential system to be integrated. 
With equ as declared below, 33.2 integrates the one-dimensional heat 
equation for a homogeneous bar with temperature kept zero at one but 
linearly rising at the other end. The differential equation system has 
been obtained by discretisation only in the space dimension (method of 
SLOBODJANSKI) : 

« procedure equ (x, y, n) res: (z) ; 

real x ; integer n ; array y, z ; 

comment global operand: t ; 

begin 
integer k ; 

{Procedure identifier, formal 
parameter part. 
Specification part. 

jA comment appended to the last 
semicolon of the specification part 
indicates that a quantity t occurs as 
global operand of this procedure. 

z[1J:= -2xy[1J+y[2J 
fork:=2step1 untiln-1 do 

z[kJ := y[k-1] - 2 xy[k] +y[k +1J ; 
z[nJ := y [n-1J -2 xy[nJ +x xt 

end equ». 

44.7.4. Neville interpolation (d. 32.1): 

«procedure nevint(n, a, b, x) res: (f) ; 
value n, x; 
real x, f ; integer n ; array a, b ; 
comment nevint computes for given values a [iJ, b [iJ (i=O, 1, ... n) 

the value f= f (x) of the unique interpolation polynomial 
of order n, which is defined by f(a[iJ)=b[iJ (i=O, 1, 
... n) ; 

begin 
integer j, k ; 
array y[O:nJ ; 
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btoy: for i : = 0 step 1 until n do y [fJ : = b [iJ ; 
for k:= 1 step 1 until n do 

for i:= n step -1 until k do 
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y[iJ :-y[j]+{x-a[fJ) x {y[fJ-y[j-1J)J{a[iJ-a[j-kJ) ; 
f:=y[nJ 

end nevint». 

In order to avoid destruction of the value of the formal array b, its 
value is first assigned to an array y which is local to the procedure 
body (statement btoy), and all necessary operations are performed with 
this y. This way of saving the array b is more economical with respect 
to storage space than calling it by value. Indeed, our method requires 
the absolute minimum of storage space for achieving the purpose, whereas 
the storage space required if b is called by value is at least that much 
{d. 45.2.1). 

44.7.5. Inversion of a square matrix a[l :n, 1 :nJ "on the spot", i.e. by 
a method which uses the storage taken by the given array a as working 
storage for the inversion and for the inverted matrix. The method of 
inversion is the same as in 43.2.4, only that in case of a zero division a 
jump to the formal label fail occurs: 

«procedure matinv(n) trans: (a) exit: (fail) ; 
value n ; 
integer n ; array a ; label fail; 
begin 

integer i, i, P ; 
for p:= 1 step 1 until n do 

loop: begin 
if a [p, p J = 0 then goto fail; 

alpha: a[p, PJ := 1Ja[p, PJ ; 
beta: fori:=1 step 1 untilp-1,P+1 step 1 untilndo 

a[p, iJ:= -a[p, iJ xa[p,PJ ; 
delta: fori:= 1 step 1 untilp-1,P+1 step 1 until n do 

for i:= 1 step 1 until P-1, P+1 step 1 until n do 
a[i, iJ:= a[i, iJ+a[i,PJ xa[p, iJ ; 

gamma: for i : = 1 step 1 until P-1, P +1 step 1 until n do 

end loop 
end matinv». 

a[i,pJ:= a[i,PJ xa[p,PJ 

However, since this procedure simply takes the diagonal elements as 
pivots, its applicability is limited to such cases where the matrix A = 
(a [i, iJ) is either symmetric and positive definite or diagonally dominant. 
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44.7.6. (This example makes use of the procedures line, prtext and print 
as defined in 43.2): 

«procedure remark (x, I, s) ; 
value x, I; 
real x ; integer I ; string s ; 
comment prints a remark given as a string s, then a value x, and 

finally produces I blank lines ; 
begin 

integer k ; 
line; 
prtext (s) ; 
print(x) ; 
for k : = 1 step 1 until I do line 

end remark». 

This procedure has the peculiarity that it does not use the formal string s 
directly but transfers it as an actual parameter to the call of procedure 
prtext. 

44.7.7. (An example with a formal switch): 

«procedure logbra(x) exit: (excess, branch) ; 
value x ; 
real x ; label excess ; switch branch ; 
begin 

integer k ; 
if x< 1 V x~ 10 then goto excess; 
k:= 1+entier(10xln(x)Jln(10)) ; 

ifk=othenk:=1 ; 
if k=11 then k:= 10; 

goto branch [k ] 
end logbra». 

{ Computation of interval 
into which x falls. 

'} Corrections made if round­
off errors produce a k be­
yond the interval 1 ~ k ~ 10. 

This procedure serves to initiate - depending on the value of x - a 
jump to one of ten (as of yet unspecified) labels; these will be specified 
only at call time as entries in the declaration for the actual counterpart 
of the formal switch branch (d. 45.6.3). The ten said labels correspond to 
the ten intervals 1 ~X<100.1, 10o.1~x<10o.2, ... , 10o.9~x<10; 

but if x is outside the interval 1 ~ x< 10, a jump to excess occurs. 

§ 45. Procedure Statements II 

A procedure statement initiates execution of an ordinary procedure 
which previously has been declared. In addition the procedure statement 
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defines - through its actual parameters - the operands to be used in 
this execution. 

The present section defines the precise action of a procedure state­
ment and insofar gives a dynamic description of the operational char­
acteristics of a procedure (as an alternative to the more static definition 
of a procedure as given in § 44 above). 

45.1. The actual-formal correspondence 

By confronting the actual parameter part (AI' A 2' .•. , A p) of a pro­
cedure statement with the formal parameter part (1\, F2 , ••• , Fp) of the 
corresponding procedure declaration, we obtain a one-to-one correspond­
ence between the two sets which defines for every formal parameter F,. 
the corresponding actual parameter Ak and vice versa. We shall also 
say that Ak is the actual counterpart of F", and F" the formal counterpart 
of Ak • 

Let us exhibit the actual-formal correspondence for the call 
«nevint(n + 1, arg, fct, 1.52, f)) of procedure nevint as declared in 44.7.4: 

formal parameter part: (n, a, b, x) res: (f) 
t t t t t 

actual parameter part: (n + 1, arg, fct, 1.52, f) 

45.2. Execution of a procedure statement 

The execution of a procedure statement is equivalent to the execution 
of a certain block as if it were inserted in place of the procedure state­
ment. This block - sometimes called the equivalence block of the proce­
dure statement - is essentially the fictitious block!, but with all formal 
parameters called by name being replaced by the corresponding actual 
parameters. This entirely hypothetical construction may serve for de­
termining the effect of a call of a given procedure but otherwise is never 
actually needed. The precise rules for constructing (syntactically) the 
equivalence block are as follows: 

45.2.1. For every formal parameter F called by value a corresponding 
declaration is put into the floor of the fictitious block 2• In addition, we 
insert after these declarations for every such F a statement which assigns 
to F the current value of the actual counterpart A. 

As an example, for an F specified as Boolean, this requires only 

« Boolean F ;» and «F: = A ;» 

1 If the value part is empty and the procedure body is already an unlabelled 
block, the latter may be taken as fictitious block. 

2 If at least one such declaration is inserted into the floor of the fictitious 
block, the declaration for the dummy variable::e (d. 44.2) can of course be omitted. 
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to be inserted at appropriate places in the floor of the fictitious block. 
However, if F is specified e.g. as integer array, the declaration becomes 

(<integer array F[ll:u1,l2:u2, .. . ,ld:udJ )}, 

where d and the l's and u's denote dimension and current array bounds 
of the actual array A, while the assignment must be described as 

«begin 
integer k1, k2, ... , kd ; 
for k1:= II step 1 until u1 do 
for k2 : = l2 step 1 until u2 do 

for kd : = ld step 1 until ud do 
F[k1, k2, ... , kdJ : = A [k1, k2, ... , kdJ 

end)}. 

In other words, the whole array A is copied onto the formal array F, 
which therefore is an array with the same array bounds as A. This 
latter fact is what may cause storage problems if an array is called by 
value, and therefore one should not do this light-heartedly. 

45.2.2. The substitution rule. Wherever a formal parameter F called by 
name is found within the procedure body!, it is replaced by the corre­
sponding actual parameter (which in this case, according to the SR, 
item 4.7.3.2, must be an identifier or a string). It should be recognized 
that - with the possible exception of formal strings - this is a replace­
ment of identifiers by identifiers regardless of their syntactic positions, 
that is, «a[i,kJ)} is replaced by «bb1[i,i])} if bb1 and j are the actual 
counterparts of a and k. 

45.2.3. Name conflicts. Where an identifier already used as name of an 
internal quantity of the procedure coincides with an identifier to be 
inserted into the fictitious block by one of the manipulations described 
above in 45.2.1 or 45.2.2, the name of the internal quantity must be 
changed 2 before the said manipUlations may take place. 

Indeed, without this rule, the effect of a call « x (z) )} of a 

«procedure x(y) ; 
real y ; 
begin realz; z:=2XY; y:=y/zend)} 

1 Note that where a formal operand is suppressed in a subblock of the procedure 
body, the identifier of the suppressing quantity is no longer formal parameter but 
just an ordinary identifier. 

2 We shall indicate such systematic name changes by appending the Danish 
letter re to the identifier. 
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would erroneously be interpreted as 

«begin real Z ; Z:= 2 xy ; z:= zjz end», 

which certainly was not the intention of the designer of the procedure. 
With the above amendment, however, the internal z is changed into 
ZeB, after which we obtain the equivalence block correctly as 

«begin real ZeB ; ZeB:= 2 XZ ; Z:= zjZeB end». 

As another example, consider the call «arcsin (c [d], e)>> of 

«procedure arcsin (x, y) ; value x ; 
real x, y ; 

d: y : = arctan (xjsqrt (1- xt2)))), 

which with only the rules 45.2.1 and 45.2.2 would be interpreted as 
being equivalent to the block 

«begin 
real x ; 
x:= c[d] ; 

d: e:= arctan(xjsqrt(1-xt2)) 
end». 

By virtue of the rule 42.3.1 this is obviously an illegal piece of program, 
but the above amendment corrects the situation by changing the label d 
into deB. 

45.2.4. Suppressed global operands. If global operands of a procedure are 
suppressed at the location of a call, then - in order to meet the require­
ments of the environment rule for global parameters - the identifiers 
of the suppressing quantities are changed systematically before the ma­
nipulations described in 45.2.1 and 45.2.2 take place l . Consider, for 
instance 

«begin 
integer t ; 
procedure common (x) ; real x ; t: = x ; 

Z: begin 
real t ; 

common(t) ; 
end Z 

end». 

1 This is the intent of the second sentence in 4.7.3.2 of the RAR. 
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Here the integer type variable t is suppressed in block z, and therefore 
the actual parameter of the call «common (t)) refers to the real type 
variable which is local to block z. Notwithstanding, according to 44.3, 
the t occurring as global parameter of procedure common refers to the 
suppressed quantity t. The above rule makes this evident by requiring 
that the name of the real type variable t be changed throughout block 
z into tee before the substitution rule is applied: 

«begin 
integer t ; 
procedure common (x) ; real x ; t: = x ; 

z: begin 
real tee ; 

common (tee) ; 
end z 

end». 

Now the substitution rule yields the equivalent block for the call 
«common (t)) correctly as (re denoting again the hypothetical variable 
necessary to make this piece of program a block) 

«begin real ee ; t:= tee end». 

Accordingly, this call accomplishes something which would seem im­
possible, namely changing the value of a suppressed variable. 

45.2.5. It should be recognized that 45.2.3 and 45.2.4 add nothing new 
to the language but simply express the fact that the manipulations de­
scribed in 45.2.1 and 45.2.2 (which are only auxiliary processes for ex­
plaining the effect of procedure calls) can of course not change the 
identity of quantities, with the exception that the formal operands 
called by name are identified with their actual counterparts. 

Consequently no name changes apply where the identifier of a global 
operand not suppressed at the location of a procedure call coincides with 
the identifier of an actual operand. Indeed, e.g. in 

«begin 
real z ; 
procedure x (y) ; real y ; 

beginz:=2xy; y:=y/zend; 

x (z) 
end» 

} Declaration of 
a procedure x. 

Call of x. 
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the z occurring as actual operand in « x (z) ) and the z which appears as 
global operand of procedure x, are one and the same quantity. It is 
therefore in order that the equivalent block for the call « x (z) ) becomes 

«begin real ce ; begin z:= 2 XZ ; z:= z/z end end). 

(This is a special case of a Gauss-Seidel effect, for which see 45.5.) 

45.3. Restrictions for actual parameters 

The actual parameters of a procedure statement must meet certain 
conditions, most of which follow from the fact that insertion of the equi­
valence block in place of the procedure statement must produce a mean­
ingful piece of program: 

45.3.1. If a formal parameter F" of a procedure X is specified as string, 
then its actual counterpart Ak must be either a string or an identifier I 
representing a formal string. In the second case I must be formal param­
eter of a procedure Y whose body contains the call of X. An example 
of this sort is the call «prtext (s) ) occurring in the example 44.7.6, which 
serves there to print the text that on a call of remark is given as actual 
operand (string) in place of the formal s. 

45 -3 .2. If F" is otherwise called by name, then the corresponding actual 
parameter Ak must be an identifier representing a quantity of the same 
kind and type as F" (d. SR, item 4.7.3-2 and 4.7.5.5). It is therefore 
not allowed to use e.g. a real type variable as actual operand where the 
corresponding formal parameter is called by name and specified integer. 

45.3.3. If F" is called by value but specified as an array (array, real 
array, integer array, Boolean array), then also Ak must be an 
identifier representing an array, but the type of Ak needs only be com­
patible with the type of F;., i.e. 

Fj. specified as 

real 
integer 
Boolean 

Type of Ak 

real or integer! 
real or integer! 
Boolean 

45.3.4. If F" is called by value and specified as a simple variable (real, 
integer, Boolean), then the actual parameter Ak must be an expression, 
namely an arithmetic expression if F;. is specified real or integer, and 
a Boolean expression if F;. is specified Boolean. (Variable identifiers 

! If needed, the rules of § 20 come into action in these cases. 
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appearing as actual counterparts of formal parameters called by value 
are automatically interpreted as special cases of expressions.) 

Note that the above case is the only one which allows subscripted 
variables and numerical or logical constants as actual parameters; in­
deed, procedure inner as declared in 44.1.3 could not have been called 
by a procedure statement «inner (10, z, z, zeta) >} with a numerical con­
stant as first actual parameter if the corresponding formal parameter n 
had not been called by value. 

45.3.5. As a special case of these rules we mention that procedure nevint 
as declared in 44.7.4 is incorrectly called in the following piece of program: 

«begin 
integer array x[O:mJ ; 

nevint (m, z, x, t) res: (I) ; 

: >}. 

This violates rule 45.3.2 because x is an integer array, whereas the formal 
counterpart b in the declaration of nevint is called by name and specified 
as a real array. Our example would be correct, however, if the formal 
parameter b had been called by value. 

45.4. Additional rules for arrays, procedures, switches 

45.4.1. Where formal operands of a procedure X have additional pro­
perties (e.g. dimension of a formal array, number of parameters of a 
formal procedure, or number of entries in the switch list of a formal 
switch), these properties must be shared by the corresponding actual 
operands. 

However, such properties of formal operands are never explicitly 
stated in the procedure declaration but usually can be found by inspec­
tion of the procedure body. For instance, if a is formal operand of a 
procedure X, and a subscripted variable «a [i, i + k, 15J >) occurs in the 
body of X, we know that a is a three-dimensional array. The array 
bounds are much more difficult to determine, however, and in fact may 
depend on other formal operands. Furthermore, a call «z(P, q, r) >} of a 
formal procedure z immediately shows that the latter has three operands. 

45.4.2. Wherever such properties of formal operands can be determined, 
the requirement that the equivalent block must be a meaningful piece 
of program has the following consequences: 

a) If F,. is a formal array (called by name or value), its actual counter­
part Ak must be an array of the same dimension. Concerning the array 
bounds, we only require that those of Ak are at least as wide as those of F,.. 



§45. Procedure Statements II 191 

b) If F,. is a formal procedure, the corresponding actual operand Ak 
must be a procedure with the same number of operands as~; moreover, 
the rules of this § 45 must hold between the actual operands of calls 
of Fk (such calls may occur in the body of X) and the formal operands 
in the declaration of Ak (which must be given somewhere outside X). 

c) If Fk is a formal switch, then also its actual counterpart Ak must 
be a switch and its switch list must have at least as many entries as the 
switch designators corresponding to Fk require. 

45.4.3. Example. Inspection of the body of procedure euler as declared 
in 48.1.3 reveals that the formal operands y and yy are one- and two­
dimensional arrays with array bounds [1 :nJ and [1 :p, 1 :nJ respectively. 
Furthermore, let is a procedure having itself four formal operands of the 
respective kinds and types (from left to right): real (by value), real 
array, integer and real array. As a consequence, a call 

«euler (0, 2, 10-2, 100, sel) trans: (ky) res: (ty)) 

requires that the following objects have been declared: 

a) «real arrayty [1 :100,1 :2J, ky [1 :2J» (these arrays may also have 
wider array bounds). 

b) «procedure sel(x, y, Z, w) ; value x ; 
real x ; integer z ; array y, W ; 

begin ... end ». 

45.4.4. There are cases where inspection of the procedure body is either 
impossible (e.g. for code procedures, d. § 47) or does not reveal further 
properties of the formal parameters. In such cases additional information 
about the formal operands may be needed and should then be given e.g. 
by a comment or through "directions for the use of the procedure". 
However, the total lack of clues as to the properties of formal operands 
may also mean that a), b), c) of 45.4.2 need not be observed at all for 
certain operands. 

An example of the latter sort is the standard I/O-procedure outarray 
(d. § 49), which allows to output arrays of arbitrary dimensions and 
array bounds. Another example is 

«procedure vgs (phi, x, y) ; 
array x, y ; procedure phi; 
comment uses global operands: p, q ; 
Phi(P, x, y, q) ». 

Since the body of this procedure is a call of a formal procedure phi, 
the dimensions of the formal arrays x, y depend entirely upon the actual 
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counterpart of phi to be used in a future call of vgs. For instance, if 
we call it by 

<wgs (inner, a, b) », 

where the actual operand inner is the procedure which has been declared 
as an example in 44.1.3, then a and b must be one-dimensional arrays, 
but in other cases the actual counterparts of x and y may well be multi­
dimensional arrays. 

45.5. Gauss-Seidel effects 

45.5.1. From what has been said so far, we would expect that a procedure 
statement performs upon the actual operands always exactly those oper­
ations which in the procedure declaration are performed upon the formal 
operands. However, this is unconditionally true only if the actual oper­
ands coincide neither with each other, nor with global operands, nor 
with hidden operands of the procedure. 

It should be clear, however, that such coincidences are absolutely 
allowed as far as the language is concerned, but they may cause un­
expected effects: 

45.5.2. Consider for instance procedure matvec as declared in 44.7.2, 
which serves to compute the product y of a matrix a with a vector x. 
Assume now that the product of a high power of the matrix a [1 : n, 1 : n] 
with a given vector b [1 : n] is to be computed. This can be achieved by 
generating a sequence of vectors 

b(O) = b, b(l), b(2), ••• , b(m), 

where (1 ) 
b(k) = a X b(k-l). 

Since only the last vector of this sequence is relevant, we may store all 
vectors b(k) in the same array b [1 :n], which then at any time contains 
the most recently computed vector b(k). With this convention, (1) can 
be rewritten symbolically as b: = a X b, which, as it would seem could 
be described in ALGOL most conveniently as 

«matvec (n, n, a, b) res: (b)). 

This is a fully legal call of matvec, but according to the rules given in 
45.2 the equivalent block for this call is 

«begin 
integer nee, m ; 
nee:=m:=n; 
begin 

real s ; integer i, k ; 
for i:= 1 step 1 until m do 
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begin 
s:= 0; 
fork:=1 step 1 untiincedos:=s+a[i,kJxb[kJ; 
b[iJ:= s 

end i 
end matvec 

end equivalence block)}. 
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We recognize immediately that the components of the vector b to 
be multiplied by the matrix a are changed before the computation of 
a X b is completed. The net effect of this is that the vector b is not 
actually multiplied with the matrix A = (a [i, k J) but with 

1 -1 

o 
a= 

- anI - an2 - an3 1 

Fig. 38 

~l ~2 al3 

a22 a23 
a33 

o 

Since this latter matrix is closely related with the Gauss-Seidel method l 

for solving linear equations, the undesired effects caused by coincidences 
among actual (and global) operands are called Gauss-Seidel effects. 

To correct the above example, we may introduce an additional vector 
bl [1 : nJ and then shuttle between band bl: 

«matvec (n, n, a, b) res: (bl) ; 
matvec (n, n, a, bl) res: (b) )}. 

45.5.3. A less obvious example is 

«begin 
real a, b, c ; 
procedure atobe ; b: = a ; 
procedure oneto (x) ; real x ; 

begin 
x:= 1; 
atobe 

end oneto ; 

oneto (b) 
end)}. 

1 See § 23 in ZURMUHL [44]. 

13 Rutishauser, Description of ALGOL 60 



194 VII. Procedures 

Here the actual operand b of the call (wneta (b))} is at the same time 
global operand of atabe, hence hidden operand of procedure aneta, which 
makes that call susceptible to a Gauss-Seidel effect. Indeed, the equi. 
valence block for this call is 

«begin 
b:= 1; 
b:= a 

end)}. 

Nate, however, that this effect would not materialize if the hidden 
operand b of aneta were suppressed at the location of the call since 
then the two b's would in fact represent two different quantities. 

45.5.4. Safeguards against Gauss-Seidel ettects. In principle we could al­
ways check by inspection of the procedure body whether or not coinciding 
operands might cause Gauss-Seidel effects. However, this troublesome 
task may be avoided if the following facts are observed: 

a) It is always harmless if an actual operand called by value coincides 
with another (actual, global or hidden) operand. 

If, for instance, in procedure matvec (44.7.2) the formal operand x 
had been called by value, then the statement 

«for k : = 1 step 1 until m do matvec (n, n, a, b) res: (b))} 

would indeed produce the desired result b(m). 

b) Gauss-Seidel effects cannot occur if a group of coinciding actual 
(including global and hidden) operands are all arguments of the pro­
cedure. 

As an example, in the call 

«inner (10, z, z, zeta))} 

(d. 44.1.3) the two formal parameters x, y which are identified with 
the same actual quantity z are, though called by name, both arguments 
of the procedure inner, as may be seen by inspection of the procedure 
body. Therefore no Gauss-Seidel effect can occur, and the above state­
ment will produce the inner product zeta of the vector z [1 : 10] with 
itself as expected. 

45.6. Further examples of procedure statements 
and their interpretation 

45.6.1. «nevint(15, n, k, 1.52) res: (x) )}. 
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The corresponding equivalent block reads: 

«begin i Declarations in the head of the equivalent 
block for formal operands called by value 
(cf. 45.2.1). Because the identifiers x, n 
appear as actual parameters of the present 
call, they are changed into XOJ, nOJ. 

integer nai ; real xee ; 
nee:= 15 ; xee:= 1.52 ; 

begin 

integer i, kee ; 
array y[O:nee] ; 

1 Beginning of procedure body in which, be­
cause also k is actual parameter, the inter­
nal k is changed into kOJ, whereupon a, b, I 
are replaced throughout by n, k, x. 

for i:= 0 step 1 until y[iJ := kul ; 
for kee : = 1 step 1 until nee do 

for i : = nee step - 1 until kee do 
y [iJ := y u1+ (xee -n[i]) X 

(y[i]-y[f-1])j(n[f]-n[i-kee]) ; 
x:=y[nee] 

end nevint 
end equivalent block). 

As might be foreseen, because nevint has no global operands and the 
given procedure statement meets the conditions stated in 45.5.4 above, 
it performs the desired action, namely Neville interpolation of order 15 
with 16 points given as abscissae n [i] and ordinates k [i]. 

45.6.2. «remark(k,15, 'fixuit'))) (compare 44.7.6) is equivalent to 

«begin 
real x ; integer 1 ; 
x:=k;l:=15; 
begin 

integer kee ; 
line; 
prtext (' fix u it') ; 
print(x) ; 
for kee : = 1 step 1 until 1 do line 

end remark 
end equivalent bloch. 

Note that in this case the change of the name of the internal variable k 
into kee was not actually needed. 

45.6.3. In order to use procedure logbra of 44.7.7, a switch with at 
least 10 entries must be declared as actual counterpart of the formal 

13* 
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switch branch, e.g.: 

«begin 
switch l: = one, two, three, lour, live, six, seven, eight, nine, ten; 

nine: seven: ... ; 

lour: six: eight: . .. ; 

ten: logbra (tt2) exit: (live, l) ; 
live: one: two: ... ; 
end 01 block; 

three: ... ». 

First we observe that switch 1 meets the requirements of the environ­
ment rules for switches (40.4.2); then, in applying the rules of 45.2, we 
obtain the following block, to which the execution of the above piece 
of program is equivalent: 

«begin 
switch 1 : = one, two, three, lour, live, six, seven, eight, nine, ten ; 

nine: seven: ... ; 

lour: six: eight: ... ; 
ten: begin 

real x; 
x:= tt2 ; 
begin 

integer k ; 
if x< 1 V x ~ 10 then goto live; 
k:= 1+entier(lOxln(x)jln(10)); 
if k = 0 then k : = 1 ; 
if k = 11 then k : = 10 ; 
goto l[k] 

end logbra 
end equivalence block ; 

live: one: two: ... ; 
end 01 block ; 

three: ... ». 

§ 46. Function Procedures and their Use 

In this section the properties and restrictions of function procedures 
are defined through amendments to the rules for ordinary procedures and 
their calls as given in § 44 and § 45. 
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46.1. Function procedure declarations 

46.1.1. A procedure can be declared as a function procedure if it produces 
exactly one single value as result while all other operands (including hidden 
operands) are strictly arguments of the procedure. 

Declaring a procedure as a function procedure has the purpose that 
its only result can be used directly as a primary in an expression. The 
declaration must then have the syntactic form described in 41.2.2. 

46.1.2. The rules for global and formal operands, specification part and 
value part apply as for ordinary procedures (d. 44.3-6), but in addition 
the following rules must be observed: 

a) The procedure identifier must occur within the procedure body as 
if it were a simple variable, but this fictitious variable - called the 
principal result of the procedure - may appear only on the left side of 
assignment statements, as may be indicated by the example 

«real procedure radius (x, y) ; value x, y ; real x, y ; 
radius: = sqrt(xt2+ yt2) )}. 

b) The principal result may neither be declared in the floor of the 
procedure bodyl nor be specified in the procedure heading; its type is 
defined solely by the declarator which appears in front of the procedure 
declaration. 

c) A function procedure must be declared in such a way that cor­
responding function designators cannot have any other effect than pro­
ducing a single value (for the precise content of this rule see 46.5.3). 

46.1.3. Restriction c) above requires that, except for the principal result, 
all operands of a function procedure (including hidden operands in the 
sense of 42.5.2) be arguments; as a consequence, e.g. neither labels nor 
switches may occur as formal operands of a function procedure (and 
therefore also not as actual operands of function designators). The follow­
ing is therefore illegal: 

« real procedure sentum (a, b, c) ; 
value a; 
real a, b ; label c ; 
if a> 0 then sentum : = exp (b x ln (a)) else goto C)}. 

On top of this, rule c) likewise disallows ordinary procedures as formal 
operands of a function procedure (d. 46.5.4), whereas they can be global 
operands, provided the hidden operands introduced in this way are 
again strictly arguments. 

1 The identifier of the principal result might of course be declared again in a 
subblock of the procedure body with the effect that the principal result is sup­
pressed in this subblock according to the general rules for scopes. 
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46.1.4. An already declared ordinary procedure which has only one result 
and neither exits nor transients can be transcribed almost mechanically 
into a function procedure, as we show now for procedure inner as declared 
in 44.1.3: 

REMOVE 
_/ ~ 

«I real 1 procedure inner (n, x, y l:J) ; ~ 

/ 

value n; integer n; array x, y; I"r":"'e-a-I s--'; I 
begin 

~lreals;1 
INSERT integer k ; 

~ ;~~k~~' step 1 unmndo"~,+x[klxy[kl 
I; inner:= sl 

end» 

Fig. 39 

46.2. Further examples of function procedure declarations 

46.2.1. Example of a logical function: 

« Boolean procedure decide (n, v, w) ; 

value n, v ; 

integer n ; Boolean v ; Boolean array w ; 
comment the principal result of this procedure obtains the value 

true if and only if all components w[i], w[2], ... wen] 
are equivalent to v ; 

begin 
integer k ; 

Boolean t ; 
t:= true; 
for k:= 1 step 1 until n do t:= tA (v=w[k]) ; 

ec~ e:=t d 'd {ASSignment of function 
value to the principal result. 

end decide». 

The only operands (besides the principal result) are the formal quantities 
n, v, w, which we immediately recognize as being arguments. Note that 
in this example an auxiliary variable t had to be introduced for the sole 
reason that the principal result may never occur on the right side of an 
assignment statement. 
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46.2.2. « real procedure zigzag (x) ; value x ; real x ; 
comment computes value of piecewise linear function as­

suming values ±1 at the integers x=4xn±1 
begin 

if abs(x» 2 then x:= x-4xentier(x/4+0.5) ; 
zigzag: = if abs (x) < 1 then x else 2 X sign (x) - x 

end zigzag». 

Note that here x, because it is called by value, is an argument of the 
procedure despite the fact that it appears within the procedure body on 
the left side of an assignment statement. 

46.2.3. (Compare also 31.4): 

«Boolean procedure stable (n, a) ; 

value n, a; 
integer n; real array a ; 

comment produces the value true if and only if all roots of the 

begin 

n 

polynomial 2: akxk, given as an array a[O:n], have nega­
o 

tive real parts; 

real c ; 
integer j, k ; 
stable: = false; 
for j : = 0 step 1 until n -1 do 
begin 

if a [0] xa[j+1J:;;;O then goto ex; 
c:= -a [jJfa [j+ 1] ; 
for k:= 7'+2 step 2 until n-1 do 

a[k]:= a[k]+cxa[k+1] 
end j ; 
stable: = true ; 

ex: end stable». 

Here the array a must be called by value in order to meet the require­
ment that it should be an argument of the procedure. Indeed, without 
value call, a would be a transient since its components occur as assign­
ment variables, and this would contradict 46.1.2, c. Furthermore, it 
should be recognized that in this example two assignments to the prin­
cipal result occur; in such a case the most recent of these assignments 
defines the value of the function. 

46.2.4. Example of an integer-valued function. 
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« integer procedure gcd (m, n) ; 
value m, n ; 
integer m, n ; 
comment computes greatest common divisor of m and n ; 
begin 

integer c ; 
m:= abs(m) 
n :=abs(n) 
if n=O then goto zero; 

div: c:= entier(mfn) ; 

repl: 
rep2: 

m:=m-cxn; 
if m~n then begin m:= m-n ; goto repl end; 1 

if m<O then begin m:= m +n ; goto rep2 end; 1 

c :=m; 
m:=n; 
n :=c ; 

zero: if n=O then gcd:= m else goto div 
end gcd». 

46.3. Rules for function designators 

While ordinary procedures are called through procedure statements, 
function procedures are called through function designators 2 which are 
constituents of arithmetic or Boolean expressions. 

46.3.1. The syntactic form of a function designator is predetermined by 
the corresponding function procedure declaration, namely it is (compare 
41.2) : 

«l » , if procedure I was declared as 
«T procedure I; 5», and 

«l (Al' A 2 , ••• , AI'» », if procedure I was declared as 
«T procedure 1(1\, F;, ... , FI'» ; Yes»~. 

In both these cases T stands for one of the declarators « real », « i n­
teger», «Boolean», while A and I have the same meaning as for 
procedure statements (d. 26.2.1). 

46.3.2. Influence of scopes and types. A function designator must be 
located within the scope of the corresponding function procedure and 
also within the scopes of all quantities appearing among its actual 

1 In the operation «entier (m[n) .> the division min is subject to roundoff errors 
which may have the effect that the new m is outside the theoretical range 0 ~ m< n. 
The two statements labelled rep! and rep2 serve to correct this occurrence. 

2 To be precise, also a function procedure might in principle be called through 
a procedure statement, but this has by definition no effect (see SR, item 5.4.4). 
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parameters, but otherwise it may occur wherever the rules for expres­
sions allow 

a) for a primary (d. 16.2), in case the function designator is of real 
or integer type, or 

b) for a Boolean primary (d. 18.2), in case the function designator 
is of Boolean type. 

46.3.3. The actual-formal correspondence between a function designator 
and a corresponding function procedure declaration is defined in exactly 
the same way as for ordinary procedures (d. 45.1). Moreover, the restric­
tions for actual parameters of a procedure statement given in 45.3 apply 
analogously also for actual parameters of a function designator. 

46.4. Evaluation of a function designator 

46.4.1. Wherever a function designator is met during evaluation of an 
expression E, the actions which are taken are equivalent to the following 
operations: 

a) The evaluation of E is interrupted and the equivalence block is 
constructed in the same way as described in 45.2 for procedure state­
ments, but in addition the principal result is declared as local variable 
of the equivalence block. 

b) This block is inserted in place of the function designator and 
executed. 

c) When the «end » of the equivalence block is reached, the current 
value of the principal result is taken as the value of the function desig­
nator, and with that value the evaluation of E is continued while the 
equivalence block is discarded again. 

d) If the execution of the equivalence block terminates through a 
jump to a destination lying outside, the further course of the computation 
is undefined. 

46.4.2. Let us demonstrate what has been said above with the arithmetic 
expression 

«p xradiusfsqrt(5 + zigzag (Pt2)) », 

where the procedures zigzag and radius are those declared in 46.2.2 
and 46.1.2 respectively. The steps to be taken are: 

a) Execute the block 

«begin real radius; radi1ts:= sqrt(xt2+yt2) end». 

b) Execute the block 

«begin 
real x, zigzag; 
x:= Pt2; 
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body: 
begin 

if abs (x) > 2 then x:= x-4 xentier(xf4+0.5) ; 
zigzag:= if abs (x) < 1 then x else 2 x sign (x) - x 

end zigzag 
end equivalence block». 

c) Evaluate «P xradiusfsqrt(5 + zigzag) I), where the values of the fic­
titious variables radius and zigzag are taken as they were produced by 
a) and b). 

46.5. The side effect question 

46.5.1. The original intention was that a function designator should 
evaluate a function which before had been defined by a corresponding 
declaration. Of course, it was agreed that in ALGOL the concept of a 
function should be somewhat more computer-oriented than in classical 
analysis, but it was felt that also in ALGOL a function should produce 
one single value to be used further in the evaluation of an arithmetic or 
Boolean expression. 

However, in ALGOL 60 the declaration of a function procedure was 
given the same syntactic form as the declarations of ordinary procedures 
(except for a preceding type declarator), and this fact made construc­
tions like the following possible in full ALGOL 60 : 

« real procedure se (a, b, c) ; 
real a ; integer b ; label c ; 
begin 

if a=O then goto c ; 
b : = entier (bfa) ; 
se:= axb 

end». 

With this declaration, a function designator «se (x, y, acryl)) would, ac­
cording to the rules of 46.4, initiate operations which are the equivalent 
to the following block 

«begin 
real se ; 
begin 

if x=o then goto acryl ; 
y:= entier(yfx) ; 
se:= xxy 

end se 
end equivalence block». 
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Accordingly, «se (x, y, acryl) >} would not only produce a value se but 
would also change the value of y or cause a jump to acryl, and this 
during evaluation of an expression! 
46.5.2. Such effects are called side effects, because the function designator 
does something besides producing a value. It should not be denied that 
with such side effects most elegant and useful effects might be achieved; 
however, for the less pretentious users of ALGOL this possibility is rather 
unwanted since side effects tend to disguise the intentions of the pro­
grammer, and ALGOL is a language for stating clearly rather than for 
disguising the intended computing process. In fact, the possibility of 
making jumps and assignments while evaluating an expression, hence 
also while evaluating subscripts and even array bounds of an array 
declaration, would open the door to confusion. For these reasons it was 
decided to disallow side effects in the SUBSET (d. SR, item 5.4.4) by 
imposing the restriction 46.1.2,c. This restriction can be formulated more 
concisely as follows: 

46.5.3. The side-effect restriction. A function procedure must be declared 
such that, if for any corresponding function designator meeting the re­
quirements of 46.3 the equivalence block is constructed according to 
the rules given in 46.4, this block is equivalent to a dummy statement!. 

As an example, the equivalence block corresponding to the function 
designator «se(x, y, acryl) >} given in 46.5.1 is obviously not equivalent 
to a dummy statement since it may produce the externally visible effect 
«y : = entier (y / x) >} or «goto acryl >}. Procedure se is therefore not allowed 
in SUBSET ALGOL 60. 

On the other hand, the equivalence block associated with the function 
designator «zigzag (Pt2) >} as shown in 46.4.2,b is indeed equivalent to a 
dummy statement because all it does is to make assignments to the 
variables x and zigzag, and these are local to the equivalence block. 

46.5.4. Ordinary procedures as formal operands of function procedures. 
Consider, for instance, 

«real procedure crit (n, a, xx) ; 
value n ; 
integer n ; array a ; procedure xx ; 
begin 

real d ; 
xx (n, a, d) 
crit:= d 

end crit>}. 

1 There would seem to be a contradiction between this rule and 46.4.1 ,c; how­
ever, here the equivalence block is executed without preserving the value of the 
principal result. 
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Here the intention is to compute a certain function of the components 
of the array a [1 : nJ, whereby an arbitrary procedure xx is involved. 
For a call «crit(15, b, c)) the equivalence block becomes 

«begin 
real crit ; 
integer n ; 
n:= 15 ; 
begin 

real d; 
c(n, b, d) ; 
crit:=d 

end crit 
end equivalence block». 

Whether or not this block is equivalent to a dummy statement as the 
rule 46.5.3 requires, depends entirely upon the procedure c given as 
actual counterpart of xx in the call of crit; indeed, the global operands 
of c are hidden operands of the above block. 

N ow this block should be equivalent to a dummy statement for any 
choice of the procedure c, while on the other hand the programmer has 
the freedom to declare e.g. 

«procedure c(u, v, w) ; integer u ; array v ; real w ; goto ZZZ» , 

where zzz occurs as destination label in the environment of the above 
declaration. Since in this way zzz has become hidden operand of crit, 
we recognize at once that the function procedure crit violates the side­
effect restriction, and so does any function procedure with an ordinary 
procedure as formal operand. As a consequence function procedures cannot 
have ordinary procedures as formal operands. 
46.5.5. However, under certain conditions ordinary procedures are al­
lowed as global operands of function procedures. As an example, the 
following piece of program is entirely legal: 

«begin 
real x ; 
procedure xx (n, a) res: (d) ; 

value n ; 
real d ; integer n ; array a ; 
comment xx uses global operand x ; 
begin 

integer k ; 
d:=O; 
for k : = n step -1 until 0 do d : = d X x + a [kJ 

end xx ; 
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real procedure crit (n, a) ; 
value n ; 
integer n ; array a ; 
comment crit uses global operand xx ; 

begin ) 
procedure body as in 46.5.4 

end xx ; 

» • 
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Here crit has xx as global operand, but since the latter is predetermined 
and the only global operand of xx is x, which is an argument, no call 
of crit can violate the side-effect restriction. 

§ 47. Code Procedures 

The ALGOL report allows the body of a procedure to be written in a 
language different from ALGOL, e.g. in internal machine code or in an 
assembly language. This section deals with some of the practical con­
sequences of this possibility. 

47.1. Independent procedures 

Procedures which have no global operands are called independent. 
Among the examples given so far, the procedures matvec, nevint, matinv, 
remark, decide, zigzag, stable and gcd are independent while equ, polar 
and radius are not. 

An independent procedure is not linked to its environment; its de­
claration can be removed from its original location and inserted at 
another place in the program without changing its meaning. Even more, 
since the environment has no bearing on the effect of an independent 
procedure, it has become customary to write or to publish the cor­
responding procedure declaration without a surrounding ALGOL program. 
In fact, the present Handbook contains a collection of computing pro­
cesses described as independent procedure declarations (this is the term 
for procedure declarations written out of context). 

Obviously an independent procedure declaration is not actually a 
legal ALGOL program but only a construction ready for being copied into 
an ALGOL program. Such copying will immediately produce a legal ALGOL 
program provided the procedure identifier does not conflict with other 
names in the program. 

47.2. Pseudo declarations 

According to the rules, an ALGOL program must contain the declara­
tions of all procedures called within the program, except those for the 
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standard functions and for the standard I/O-procedures. Thus, if one 
wishes to run a program using an independently declared procedure, the 
corresponding declaration must first be copied into that program (into 
the head of some block). 

However, if the ALGOL program is to be published, such copying is 
most impractical; in fact it would mean that an already published pro­
cedure declaration is being published again. In order to avoid this waste, 
several philosophies have been introduced. 

The ALCOR group decided that the declarations for independently 
declared procedures should be inserted at the proper places in the ALGOL 
programs in which they are used, but that hereby the procedure bodies 
might be abbreviated by the symbol « code)}, e.g. 

«procedure matinv(n) trans: (a) exit: (fail) ; 
value n ; 
integer n ; array a ; label fail; 
code)}, 

«real procedure zigzag (x) ; value x ; real x ; code)}. 

These" mutilated" procedure declarations used by the ALCOR group 
as representatives of independently declared procedures are called pseudo­
declarations. Their syntactic form complies with the rules given in § 41 
and § 44, only that the letter 5 now stands for the symbol «code)}, 
which, if we consider it as a piece of code (d. RAR, section 5.4.6), is 
a fully legal construction. 

The symbol « code)} also has a practical significance: It informs the 
computer at compilation time that the actual procedure body can be 
found at some other place, e.g. in pretranslated form on a library tape. 

Pseudodeclarations can also appear within procedure declarations, 
namely if they use previously declared procedures as subprocedures. 
For instance, if procedure matvec is already declared as shown in 44.7.2, 
a procedure raylqu for computing the Rayleigh quotient of a vector 
x [1 : n] with respect to a matrix a [1 : n, 1 : n] can be simplified as follows: 

« real procedure raylqu (n, x, a) ; 
value n ; 
integer n ; array x, a ; 
begin 

integer k ; 
real g, h ; 
array y [1 : n] ; 
procedure matvec (m, n, a, x) res: (y) ; 

value m, n ; 
integer m, n ; array a, x, y ; 
code; 



§47. Code Procedures 

program: 
g:=h:=O; 
matvec (n, n, a, x) res: (y) ; 
for k:= 1 step 1 until n do 
begin 

g:=g+x[kJt2 ; 
h:=h+x[kJxy[kJ 

end k; 
raylqu : = h/g 

end raylqu». 

207 

Of course not much ink is saved in this little example, but the use 
of previously declared procedures may allow considerable simplifications 
in other cases. Furthermore, it should be recognized that the object 
program corresponding to procedure raylqu requires indeed less space on 
the library tape in this way, and this is not offset by the space used for 
procedure matvec, since the latter is very likely used also upon other 
occasions. 

Of course, the pseudo declaration for procedure matvec could be re­
moved from the body of raylqu, but then matvec would be a global 
operand of raylqu, and hence the latter would not be independent. 

47.3. Code procedures 

A code procedure is a procedure (function or ordinary) whose body 
is not written in ALGOL but in some other language, e.g. in internal 
machine code. Code procedures are needed for performing strongly 
computer-oriented operations such as in- and output or operations upon 
single bits of machine words, in short: for operations that cannot (or 
only inefficiently) be described in terms of ALGOL. 

The heading of a code procedure declaration must obey the very 
same rules as for non-code-procedures, but the procedure body is given 
as a piece of code for which no rules can be given. In fact, the design 
of this piece of code is dictated entirely by the properties of the computer/ 
compiler configuration with which the program is to be run. 

As an example, we exhibit a procedure which performs for given 
integer values x, y, z (all < 246 in modulus) the decomposition of 

xxy+z into CX246 +d, 

where c, d are also < 246 in modulus. The body of this procedure is 
written in CODApl [l1J, which is the assembly language for the CDC 

1 Some operation symbols ofCODAP are: SLJ: jump; LDA: Clear and add; 
STA: Store; RTJ: Jump with automatic return; BSS: Reservation of a storage 
area; SAU: Substitute address of upper half word; SAL: Substitute address of 
lower half word. For further details see [11]. 



208 VII. Procedures 

1604A computer: 

« procedure precmp (x, y, z) res: (c, d) ; 
integer x, y, z, c, d ; 

PRECMP SL] ** { Entry point. After entry, return address 

LDA 6 0 is inserted in place of * * . 
STA X 
LDA 6 1 
STA Y The CDC 1604 A ALGOL compiler places 

LDA 6 2 links between actual and formal operands 

STA Z 
into consecutive positions p, p+ 1, P+2, 
... , where p is the contents of index reg-

LDA 6 3 ister 6. These links are now being stored 
STA C into symbolic positions X, Y, Z, C, D. 

LDA 6 4 
STA D 
RT] X 

X BSS 1 
SAU MULT 
RT] Y 

Y BSS 1 
SAL MULT 
RT] Z Jumps to the program which callsprecmp 

Z BSS 1 (with automatic returns) for fetching ad-
dresses of actual operands; these addres-

SAL MULT+3 ses are inserted at appropriate places 
SAU ADD-1 below (indicated by **). 

RT] C 
C BSS 1 

SAU ADD+4 
RT] D 

D BSS 1 
SAL ADD+2 

MULT LDA ** 
MUF ** 
LLS 1 
STA C 
ALS 2 
LRS 2 
STQ D 
LDA ** 
LDQ C 
Q]P Z ADD 

+ SSK D 
SL] POS 



NEG 

POS 

+ 
ADD 

BM 

AJP 
RAO 
LAC 
SLJ 
AJP 
RSO 
LDA 
ADD 
ADD 
LRS 
STA 
ARS 
LRS 
STQ 
LDA 
ADD 
STA 

SLJ 

OCT 
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M ADD 
C 
BM 
ADD-1 

P ADD 
C 
BM 
** 
D 
46 
D 
1 
2 

** 
C 
D 

** 

These instructions describe the calcula­
tion proper of c, d from the given x, y, z. 

** mean addresses to be inserted by the 
previous parts of the program, while 
C, D are auxiliary symbolic positions for 
intermediate results. 

PRECMP { ]u.mp back to first instruction, where 
eXlt from precmp occurs. 

2000000000000000) (2t46 in octal form) . 

Obviously such a code procedure body has significance only for a 
specific computer/compiler configuration and should therefore not appear 
in an ALGOL program since we expect the latter to be a computer­
independent description of a computing process. Consequently the ALCOR 
group decided that in such cases the symbol «code I> be written in place 
of the procedure body. In other words, code procedures are treated like 
independent procedures; in both cases only the corresponding pseudo­
declaration will appear in the ALGOL program that uses the procedure, 
while the full procedure body may be e.g. on a library tape, written in 
machine code or in some symbolic language. 

It remains to say what will happen with code procedures when ALGOL 
programs are exchanged between different computers. For procedures 
whose body can be written in ALGOL we can assume that this ALGOL text 
is also exchanged and may either be used directly or (if it would produce 
a too inefficient object program) at least serve as a model for designing 
the procedure body directly in machine code. However, in many cases 
we can but describe the effect of a procedure in plain words. For instance, 
in the case of a procedure declared as 

«procedure output (a, b, c) ; 
value a, c ; 
real c ; integer a ; string b ; 
code), 

t4 Rutishauser, Description of ALGOL 60 
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the description of the operational behaviour might read as follows: 

"<<output (a, b, c)) outputs via output device a the real value c with 
a format defined by the string b. The contents of the string (i.e. what 
appears between the string quotes) must have the syntactic form of an 
unsigned number (d. 10.2), possibly preceded by a sign; furthermore, 
an arbitrary number of space symbols may be inserted at arbitrary 
places in this string. This string will serve as a model for the output of c: 
The space symbols, the period and the base ten of the string will appear 
at the respective places in the output of c (the space symbols will appear 
as blanks), while the sign of c will appear at the place of the sign in b 
but with the additional convention that a minus sign in b indicates that 
a positive sign of c will be suppressed in the output". 

As an example, <<output (5, , u u -387.502u 731O+17u u', 1.000)) 

will produce the output I 100.000 0010-02 Ion the output device 5. 

47.4. Economisation of ALGOL programs with aid of code procedures 

If utmost efficiency is required, it may be felt that the translation 
of an ALGOL program into machine code should be done by an expert 
programmer rather than by an ALGOL compiler (at least as long as 
compilers cannot match the abilities of human programmers). In order 
to avoid forcing the programmer to translate the whole ALGOL program 
manually into machine code, one can single out those parts of the 
program in which most of the computing is done (e.g. the innermost 
loops), remove these parts from the program and declare them as code 
procedures. The other parts remain written in ALGOL, with appropriate 
calls of those code procedures being inserted between them. Of course 
this is not always feasible, but often a nearly optimal program can be 
obtained at the expense of optimizing only a small fraction of the whole 
program. 

47.4.1. As an example, procedure matinv as given in 44.7.5 can be 
economized as follows: 

«procedure matinv (n) trans: (a) exit: (fail) ; 
value n ; 
integer n ; array a ; label/ail; 
begin 

integer i, j, P ; 
procedure econom (n, p) trans: (a) ; 

value n,p ; 
integer n, p ; array a ; 
code; 

for p:= 1 step 1 until n do 

I Code procedure for 
optimizing statement 
delta in 44.7.5. 
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alpha: 
beta: 

delta: 
gamma: 
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begin 
if a [p, P] = 0 then goto jail; 
a[p,p]:= 1/a[p,p] ; 
for j: = 1 step 1 until p -1, p+ 1 step 1 until n do 

a [p, j] : = - a [p, jJ X a [p, P] ; 
econom(n,p) trans: (a) ; 
fori:=1 step 1 untilp-1,P+1 step 1 until n do 

a[i,p]:= a[i,p] xa[p,p] 
end loop 

end matinv», 
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provided the body of econom is written in machine code as the equi­
valent of: 

« begin 
integer i, j ; 
for i: = 1 step 1 until p -1, p+ 1 step 1 until n do 

for j:= 1 step 1 until p -1, p+ 1 step 1 until n do 
a[i, j]:= a[i, j]+a[i,p] xa[p, j] 

end econom». 

We observe that the economized program is scarcely any shorter than 
the original one, but it yields certainly a more efficient object program 
since all operations performed 0 (n3) times are expressed directly in 
machine code. 

47.4.2. Let us now in the same way optimize the Banachiewicz process 
for solving linear systems (d. 31.1): It is easy to see that it is statement 
sum which accounts for the total computing time being on the order 
of o (n 3) : 

«sum: forj:=1 step 1 untilldot:=t+a[i,j]xa[j,k]». 

We may therefore realize a considerable saving in computing time 
by describing this operation (computation of the inner product 
n 
L a [i, j] X a [j, k]) as a procedure whose body is later transcribed into 
i=l 
optimized machine code. 

However, if we try to compute this inner product by a call of pro­
cedure inner (declared in 44.1.3), we are faced with the problem that 
the formal operands x, y of inner are one-dimensional arrays while here 
we have to compute inner products of rows by columns of a two­
dimensional arraya. In ALGOL 58 we could have accomplished this in 
the most natural way with a call 

(<inner (l, a [i, ], a [ ,k]) res: (t)), 

but this is not possible in ALGOL 60. 
14· 
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On the other hand, we could still handle this problem in full ALGOL 60 
by means of the so-called Jensen-device (d. § 52). However, since this 
solution, besides not being available in the SUBSET, is far from being 
optimal with respect to object program efficiency, we propose another 
solution. Indeed, since the inner product is such an important operation 
and yet is described by only a few ALGOL statements, it pays to con­
struct a special inner product procedure for every situation. For our 
present purposes it is most appropriate to describe the computation of 
the inner product of the i-th row of a matrix x [1 :n, 1 :1] with the k-th 
column of a matrix y[1 :1,1 :m] by a 

« real procedure rowco1 (n, m, 1, i, k, x, y) ; 
value n, m, 1, i, k ; 
integer n, m, 1, i, k ; array x, y ; 
begin 

integer j ; 
real s ; 
s:= 0; 
forj:=1 step 1 untilldos:=s+x[i,j]xYU,k]; 
rowcol:= s 

end rowcol». 

With this, the Banachiewicz process given in 31.1 can be rewritten as 

«begin 
for i:= 1 step 1 until n do 
begin 

for k:= 1 step 1 until n do 
begin 

1 : = if i> k then k - 1 else i - 1 
t:= a[i, k]+rowcol(n, n,l, i, k, a, a) ; 
a[i, k]:= if k<i then -tfa[k, k] else t ; 

end k; 

» • 

Now we can not only write the body of rowcol in machine code (thus 
producing a faster object program) but in doing so, we can perform the 
summation of the products just as well in double precision and in this 
way obtain more precise results. 

§ 48. Parameter Procedures 
Procedures which occur as formal or actual operands of other pro­

cedures are called parameter procedures. They allow quite unusual effects, 
which we are going to discuss in this section. 
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Examples of parameter procedures come mainly from two sources: 
Procedures that perform operations in which arbitrary functionals are 
involved, and procedures that require interference from outside during 
their execution. 

48.1. Examples involving arbitrary functionals 

48.1.1. Let us consider the summation of a finite series whose terms are 
arbitrary functions of a subscript k expressed by a real type function 
designator <derm (k) ». In order that arbitrary terms can be summed, 
the function procedure term cannot be defined in the summation process 
but must be left open, i.e. quoted as formal operand: 

«real procedure sum (P, q, term) ; 
value p, q ; 
integer p, q ; real procedure term; 
comment calculates sum of term(k) from k=p through k=q ; 
begin 

real s ; 
integer k ; 
s:= 0; 
for k : = p step 1 until q do s: = s + term (k) ; 
sum:= s 

end sum». 

48.1.2. In order to use procedure sum for computing the inner product z 
of two vectors a [1 : nJ and b [1 : nJ, the actual counterpart of term in a 
call of sum must be declared such that the terms a [kJ X b [kJ are summed. 
In other words, we have to declare a function procedure, e.g. scalp, 
such that a corresponding function designator «scalp (P)) produces the 
value a [PJ X b [PJ, and quote scalp as actual counterpart of term in a 
call of sum: 

«begin 
comment quantities array a, b, integer n, real z, real proce-

dure sum assumed global to this block; 
real procedure scalp (P) ; 
integer p ; 
comment scalp uses global operands a, b ; 

scalp : = a [PJ X b [P ] 
z:= sum{1, n, scalp) ; 

end». 

48.1. 3. As a further example let us consider a procedure euler for nu­
merical integration of a system of differential equations 

Y; = li(X, Yl' Y2' ... , Yn) (i =1,2, ... , n) 
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by Euler's method. One integration step is described by 

«begin 
tet(x,y,n) res:(z); 
x:=x+h; 
for k:= 1 step 1 until n do y[kJ:= y[kJ+hxz[k] 

end», 

where tet is a procedure which computes the quantities 

z[k] =A(x, Y [1], y [2], ... , y en]) (k = 1,2, ... , n) 

for given values of n, x'Yl(x)=y[1], ... ,Yn(x)=y[n]. Thus tet defines 
the differential equations to be solved, but since euler should be able 
to integrate an arbitrary system of differential equations, tet cannot be 
declared within euler but must be quoted as formal operand: 

« procedure euler (x, n, h, p, tet) trans: (y) res: (yy) ; 
value x, h, n, p ; 
real x, h ; integer n, p ; array y, yy ; procedure tet ; 
comment euler performs, for given initial values x, y [1J, y [2J, 

... , y [ n J, P integration steps by Euler's method with 
increment h. The solution is obtained as an array 
yy[1 :p, 1 :n], where yy[j, kJ denotes the value of the 
k-th component at the j-th meshpoint ; 

begin 
integer j, k ; 
array z [1 : n J ; 
for j : = 1 step 1 until p do 
begin 

tet (x, y, n) res: (z) ; 
x:= x+h; 
for k:= 1 step 1 until n do 

yy [j, kJ : = y [kJ := y [kJ +h xz[kJ 
end j 

end euler». 

48.1.4. The user of euler who wants to integrate a differential system 
must define the latter by declaring an appropriate procedure as actual 
counterpart of tet in a call of euler, e.g., if he wants to integrate the 
heat equation as indicated in 44.7.3: 

«begin 
comment integer m, k, array zl [1: m], z2[1: 100,1 :m], 

procedure euler are assumed global to this block; 
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procedure equ (x, y, n) res: (z) ; 
value x, n ; 
real x ; integer n ; array y, z ; 

begin ) 
procedure body as in 44.7.3. 

end equ ; 
for k : = 1 step 1 until m do zl [kJ : = ° ; 
euler (0, m, 0.01,100, equ) trans: (zl) res: (z2) ; 

end)}. 
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After termination of this block the desired solution is found in the 
array z2, the j-th row of which contains the heat distribution at the 
time t=hxj. 

48.2. Execution of parameter procedures 

48.2.1. The precise effect of a procedure call involving parameter pro­
cedures can always be analyzed by iterated application of the sub­
stitution rule, beginning with the outermost procedure call and ending 
with the innermost. 

For instance, if we have the situation: 

«begin 
procedure zzz (a, b, c, d) ; real a, b, c ; 

if b> ° then goto d else c : = alb; 
xxx(j, zzz) 

end )}, 

label d ; } Declaration 
for zzz. 

where procedure xxx is declared in some outer block as: 

«procedure xxx(w, yyy) ; 
real w ; procedure yyy ; 
begin 

real u, v ; 

l3: yyy (u, v, w, label) ; 
label: 

end XXX)}, 

then the rules of 45.2 are applied first to the call «Xxx (j, zzz) )}. Hereby 
this call is replaced by the equivalence block, and the call «yyy (u, v, w, 
label)} occurring in the latter is modified into a call (<zzz(u, v, f, label) )}, 
to which the rules of 45.2 are applied again. 

48.2.2. The semistatic rule. Despite the fact that the analytical method 
of 48.2.1 above is the only legal one for defining the effect of procedure 
calls involving parameter procedures, computing practice requires a 
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slightly different approach. Indeed, a parameter procedure serves essen­
tially to allow for modifications of a procedure at call time; what we 
need to know is therefore the operational behavior of the modified 
procedure, more precisely, the behavior of a procedure X under con­
sideration of a specific procedure Z given as actual counterpart of a 
formal operand Y (of X). For the user of X it is desirable to have the 
properties of the modified X described again as a procedure Xl, which 
can be constructed as follows: 

The rules of 45.2 are applied to the calls of Y occurring inside X, 
only that the body of Z is used in place of the (nonexistent) body 
of Y. After that, Y is removed from the formal parameter part and 
specification part of procedure X. 

For the example mentioned in 48.2.1 above this comes as follows: 

« procedure xx xl (w) 
real w ; 

13: 

begin 
real u, v; 

begin 
real ce ; 
if v> 0 then goto label else w : = ujv 

end zzz ; 
label: 

end xxxl». 

1 
Equivalence 
block for call 
of zzz. 

N ow the call « xxx (I, zzz) » has the same effect as the call « xx xl (I) » 

of the new procedure; for the latter the rules of 45.2 yield the same 
equivalence block as would have resulted through the orthodox rules 
mentioned in 48.2.1 : 

«begin 
real u, v ; 

l3: begin 
real ce ; 
if v> 0 then goto label else I: = ujv 

end zzz ; 
label: 
end equivalence block ». 

{t is substituted 
for w 

Applying the semistatic rule to the combination eulerjequ as declared 
in 48.1.3 and 44.7.3, we obtain: 
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«procedure eulerl (x, n, h, p) trans: (y) res: (yy) ; 
value x, n, h, p ; 
real x, h ; integer n, p ; array y, yy ; 
comment integrates a specific differential equation by Euler's 

method; 
begin 

integer i, k ; 
array z [1 : n] ; 
for i:= 1 step 1 until p do 
begin 

begin 
integer k ; 
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z[1]:= -2xy[1]+y[2] ; 
for k : = 2 step 1 until n - 1 do 

z[k] :=y[k-1]-2xy[k]+y[k+1]; 

Body of pro­
cedure equ. 

zen] :=y[n-1]-2xy[n]+txx 
end equ ; 
x:= x+h; 
for k:= 1 step 1 until n do 

yy[i, k]:= y[k]:= y[k]+hxz[k] 
end i 

end euler 1 )}. 

Note that this new procedure eulerl has a global operand t which was 
introduced through procedure equ. According to the environment rule 
for global parameters, this t refers therefore to a quantity valid in the 
environment of the declaration for equ; in fact, t links eulerl to this 
environment. 

48.2.3. Provided procedure X (with procedure Y as formal operand) is 
independent, the execution of a call of X with Z as actual counterpart 
of Y can be visualized as follows: 

program W uS'ing x 

declaral/on for z 

call of procedure x 

Fig. 40 

d eclaralion of procedure x 
wi/Ii formal operrmd y. 

call of procedure y 
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As this picture indicates, it is as if upon call of X a jump from the 
"program" W to the declaration for X occurred, and upon call of Y 
(inside X) a jump back to the declaration of Z, which is located in W 
(this is what we call an intermediate return to the program which called X). 
After execution of Z, execution continues in X, and after termination 
of X, a jump back to Woccurs. 

48.3. Interference with the execution of a procedure! 

48.3.1. Procedures which completely define the operations to be per­
formed upon a call are sometimes too inflexible for practical purposes. 
For instance, the proper termination of an iterative process may require 
information which is simply not available to the designer of the proce­
dure, while the user may know more about it. In other cases the con­
vergence could be improved if only the user of the procedure could give 
some clues concerning the distribution of the eigenvalues of a certain 
matrix. 

In order to enable the user of a procedure X to apply his knowledge 
for influencing the execution of the procedure, the designer of X selects 
certain breakpoints in the body of X where he thinks the user might 
wish to intervene. At these points he then places calls of an unspecified 
procedure Y and chooses as actual operands of this call all those internal 
quantities of X that might be used for influencing the execution of X, 
plus one extra operand for enumerating the various calls of Y. Y is 
then quoted as formal operand of X. 

On the whole, the declaration for X will obtain the following structure: 

«procedure X( ... , Y) ; 
... ; procedure Y ; 
begin 

real a ; integer b ; switch c ; 

Y(1, a, b, c, ... ) ; 

Y(2, a, b, c, ... ) ; 

Y(3, a, b, c, ... ) ; 

end X». 

In certain cases, several such parameter procedures 1';., 1";, ... , may 
be needed, while in other cases Y is called only once, making the enumer­
ation parameter superfluous. 

1 Compare also [30]. 
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48.3.2. Consider, as an example, the orthogonalisation procedure as given 
by SCHWARZ [34], §8 (slightly modified), in which we insert two calls of a 
parameter procedure cont: 

«procedure orth(n,p, cont) trans: (a) res:(r) exit: (zero) ; 

value n,p; 

integer n, p ; array a, r ; label zero; procedure cont ; 

begin 
real u; 

integer i, i, k, s ; 

loop: 

for k:= 1 step 1 until p do 
begin 

. First call of parame-

enter: 

for i:= 1 step 1 untilp do r[i,k]:= 0; { . 
cont (1, k, p, n, a, r, exzt) ; ter procedure cont. 
for i : = 1 step 1 until k -1 do 

exit: 

begin 
u:=o; 

for i:= 1 step 1 until n do 
u:= u+a[i, iJ xa[i, k] ; 

for s:= 1 step 1 until n do 
a[s, k] := a[s, k] -u xa[s, i] ; 

rei, k]:= rei, k]+u ; 

end i ; 
u:=o; 

for i:= 1 step 1 until n do 
u:=u+a[i,kJt2 ; 

r[k, k] := sqrt(u) ; 

cont(2, k, p, n, a, r, enter) ; 

if r [k, k] = 0 then goto zero ; 

for s:= 1 step 1 until n do 

end k; 
end orth». 

a[s, k]:= a[s, k]jr[k, k] ; 

Make k-th column of 
A orthogonal to all 
previous columns 
and build up the co­
efficients r [f, kJ. 

1 Determine length of 
orthogonalized 
k-th column. 

{
Second call of pa­
rameter procedure 
cont. 

} Normalize 
k-th column. 

In this procedure the columns of the matrix A given as an array 
a [1 : n, 1 : P] are orthonormalized, i.e. A is decomposed into U X R such 
that after termination the array a [1 : n, 1 : P] contains the elements of U 
(which has orthonormal columns) while the resulting array r [1 : p, 1 : P] 
contains the elements of the upper triangular matrix R. 
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The parameter procedure cont can be used in various ways; for in­
stance, we could declare as actual counterpart of cont: 

«procedure c1 (nr, k, p, n, a, r, label) ; 
value nr ; 
integer k, p, n, nr ; array a, r ; label label ; 

if nr = 1 then goto label). 

This would have the effect - as becomes obvious through the semistatic 
rule - that the columns of A are merely normalized without changing 
their direction, since the whole orthogonalisation part (statement enter) 
is skipped. 

48.3.3. However, if we declare 

«procedure c2(nr, k, p, n, a, r, label) ; 
value nr ; 
integer nr, k, p, n ; array a, r ; label label ; 
begin 

if nr = 1 then Ilag : = false ; 
ifnr=2J\ -.llagJ\r[k, kJ =FO then 
begin 

real 1 ; 
integer l ; 
Ilag : = true; 

1:=0 ; 
for l:= 1 step 1 until k-1 do 

1 : = 1 + r [l, k Jt2 ; 
if/>100 xr[k, kJt2 then gotolabel; 

end il nr= 2 
end c2) 

Go to repetition of ortho­
gonalisa tion if r [k, k J t 2 be-l comes small compared to 
r[1, kJt2+r[2, kJt2+ ... 
+r[k-1, kJt2, which 
means that the length of 
the k-th column has col­
lapsed. 

and use this as actual counterpart of cont in a call of orth, it helps to 
avoid deterioration of the orthogonality of the columns of U, which 
otherwise might take place in certain cases. Indeed, according to the 
semistatic rule, and with some obvious simplifications, procedure orth 
becomes equivalent to: 

« procedure orthl (n, p) trans: (a) res: (r) exit: (zero) ; 
value n,p ; 
integer n, p ; array a, r ; label zero; 
comment global operand: Ilag ; 
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begin 
real u ; 
integer i, j, k, s ; 
for k:= 1 step 1 until p do 

loop: begin 
forj:= 1 step 1 untilp dor[j, kJ:= 0 ; 

flag: = false; 

enter: forj:=1 step 1 until k-1 do 
begin 

u:=O; 
for i:= 1 step 1 until n do 

u:= u+a[i, fJ xa[i, kJ ; 
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lEQuivalent of first 
call of cant with c2 as 
actual counterpart of 
cant. 

for s:= 1 step 1 until n do 
a[s,kJ:=a[s,kJ-uxa[s,jJ; 

r[j, kJ:= r[j, kJ+u 
end j ; 

exit: u:= 0 ; 

for i:= 1 step 1 until n do u:= u+a [i, kJt2 ; 
r[k, kJ := sqrt(u) ; 
if ......, flag A r [k, k J =l= 0 then 
begin 

real f ; 
integer l ; 
f:= 0; 
flag: = true; 
for l : = 1 step 1 until k-1 do 

f:=f+r[l,kJt2 ; 
if f>100 xr[k, kJP then goto enter; 

end if ......, flag; 
if r[k, k J = 0 then goto zero; 
for s:= 1 step 1 until n do 

end k ; 
end orthl». 

a[s, kJ:= a[s, kJ/r[k, kJ 

Equivalent of second 
call of cant with c2 as 
actual counterpart of 
cant. 

Quite obviously this modified procedure orthl repeats the ortho­
gonalisation of the k-th column of A in case its length has collapsed 
during the first orthogonalisation, and thus improves the orthogonality 
of the columns of the resulting matrix U. 
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48.3.4. An unusual application. Parameter procedures may often be used 
to change completely the functional behavior of a given procedure; 
whether this is useful or not is of course another question. 

Let us again consider procedure orth as declared above in 48.3.2. 
From this declaration we see that the components of the array a, which 
appears as the fourth formal operand, need not be given at call time 
but can be brought into the computation via the parameter procedure 
contI. More precisely, at the latest for the beginning of the k-th turn 
of the k-Ioop (statement looP) the k-th column of the array a must be 
available. This makes it possible to construct the k-th column as follows: 
After columns 1 through k-1 of the matrix A have been orthonormalized 
and thus the column vectorsul> U2, ... , Uk_l of the matrix U have been 
computed, the k-th column vector ak of A is produced as the product 
of a given matrix B=b [1 :n, 1 :n] with Uk-I' With this ak> statement 
loop will produce the orthonormalized vector Uk and the k-th column 
of the matrix R such that the following relation holds: 

-+ B~ ~ ~ ~-+ 
ak= uk_l=rl,kuI+r2,ku2+ ... +rk-l,kuk-l+rkkuk' 

If we set out with an arbitrary vector al = it and proceed for k = 2, 
... , n + 1, it turns out that we perform exactly the Arnoldi method [3] 
for transforming an arbitrary matrix B to Hessenberg form: 

B -i>- Rl = U T B U, 

where U is the orthogonal matrix with columns Uk, and 

r12 r13 ........ 
~l,n+1 

r22 r23 

Rl = 0 r33 
0 0 

o o 

contains the 2-nd through n + 1-st columns of R. To achieve this effect, 
we declare 

«procedure arnold (nr, k, p, n, a, r, label) ; 
value nr ; 
integer nr, k, p, n ; array a, r ; label label; 
comment global operands: b[1:n,1:n],w[1:n]; 
if nr=1 then 

1 This is only possible for operands called by name since for operands called 
by value, rule 45.2.1 would put a meaningless assignment statement into the floor 
of the equivalence block. 
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begin 
integer i, j ; 
real s ; 
if k = 1 then for i : = 1 step 1 until n do a [i, k] : = w [i] ; 
if k =l= 1 then 

for i:= 1 step 1 until n do 
begin 

s:= 0; 
for j:= 1 step 1 until n do 

s:=s+b[i,nxa[j,k-1] ; 
a[i,k]:=s 

end 
end arnold) 

and then call orth by 

(wrth (n, n + 1, arnold) trans: (a) res: (r) exit: (zero))). 
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This statement requires that the value of n be given and that the 
arrays a, r be declared (at least) as 

« array a [1 : n, 1 : n + 1], r [1 : n + 1, 1 : n + 1] ), 

while the arrays b [1 : n, 1 : n] and w [1 : n] must be declared and have 
values. After termination of this procedure statement, U is the matrix 
contained in the columns 1 through n of array a, while R1 is found in 
columns 2 through n + 1 of array r. 

48.3.5. Nested parameter procedures. While the above problem is of the 
simple structure indicated in Fig. 40 (48.2.3), still more complicated 
situations may occur in practice. 

For instance, we may desire to perform experiments with various 
numerical methods for integrating differential equations. We assume 
these methods to be described formally as 

« procedure method (x, n, h, p, Ict) trans: (y) res: (yy) ; ... ) 

with the same meaning of the formal operands as in procedure euler 
(d. 48.1.3). 

In order that these methods can be compared, they are all applied 
to the same type of differential equation 

(j(x) y")"=m(x)y, 

which is integrated in p equal steps from 0 to 1. To this end, auxiliary 
variables Y1=Y' Y2=Y" Y3=j(X)Y", and Y4=(j(X)Y"}' are introduced. 

To perform this task such that p, the positive functions j(x) and m(x) 
as well as the initial values W[k]=Yk(O) (k=1,2,3,4) can be varied, 
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a procedure metex is declared as follows: 

«procedure metex(p, j, m, method) trans: (w) res: (yy) ; 
valuep; 
integer p ; array w, yy ; procedure method; 
real procedure j, m ; 
begin 

array y, z[1 :4] ; 
proceduresys(x,y,n)res:(z); valuen,x 

real x ; integer n ; array y, z ; 
begin 

z[1] :=y[2] ; 
z[2] :=y[3]!i(x) ; 
z[3]:= y[4] ; 
z[4]:= m(x) xy[1] 

end sys ; 

Procedure sys to be 
used as actual coun­
terpart of fct in a call 
of the formal operand 
method, where the 
latter represents the 
method to be tested. 

{Call of the formal 
method (0, 4, 1fP, p, sys) trans: (w) res: (yy); operand method. 

end metex >}. 

The effect of a call «metex (p, ii, mm, euler) trans: (w) res: (yy) >} of this 
procedure might be pictured as follows: 

muin progrum 

procedure s!Js 

LI_re_(l_IP_r_o_ce_d._u_re __ n_· ____ ~[ 
cull j (x) 

I reul procedure mm 
call m(x) 

procedure euler 

call fcf 

call me/hod 

call me/ex 

Fig. 41 

48.4. Some programming problems 

48.4.1. Usually a procedure P is declared first and only later is it used, 
whereby the user may infer from the corresponding declaration what 
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a call of the procedure should look like. For parameter procedures, how­
ever, it is just the other way round: All that the user of procedure orth 
(to give an example) can see of the parameter procedure cont are two calls 

«cont(1, k,p, n, a, r, exit)} and «cont(2, k,p, n, a, r, enter)}, 

from which he must deduce how the corresponding actual procedure 
should be declared in order that the above calls meet the rules given 
in § 45 (in case of a formal function procedure also § 46 must be observed). 
The necessary properties of the operands of cont can be found only by 
inspection of procedure orth. 

In our example, we quickly see that the seven operands are (from 
left to right) : 

1) an integer variable (which must be called by value in order to 

2) 3) 4) 
5) 6) 
7) 

allow for a numerical constant as corresponding actual operand), 
three integer variables, 
two real arrays, 
a label, 

but in other cases the analysis may be tedious and in certain cases 
(d. 45.4.4) the types of the operands of a parameter procedure are even 
indeterminate. 

48.4.2. Global operands oj parameter procedures. If a differential equation 
containing arbitrary coefficients, e.g. 

y" +k X (y'lt3 + I xy = 0, 

should be integrated with the aid of procedure euler, such coefficients 
can enter the computation only as global operands of the actual counter­
part of jet because the rules of ALGOL simply leave no other choice. 
We therefore declare: 

«procedure jctact(x, y, n) res: (z) ; 
real x ; integer n ; array y, z ; 
comment global operands: k, I ; 
begin 

z[1J :=y[2J ; 
z[2J := - k xy [2Jt3 -I xy [1J 

end)}. 

This is also quite natural, since on one hand the coefficients k, I are 
alien to procedure euler, while on the other hand the environment rule 
(d. 44.3.2) clearly states that the quantities k, I automatically belong 
to the outside of euler and are considered different from local quantities 
of euler that may have the same names. In other words, if Z is a procedure 

15 Rutishauser, Description of ALGOL 60 
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to be used as actual counterpart of a procedure Y which is formal 
operand of X, the user of X may choose the names of global operands 
of Z without worrying about names of local quantities of X since a 
conflict with these names is impossible. 

48.4.3. Access to internal quantities of X. An adverse effect of the other­
wise very useful environment rule is that a parameter procedure Y of 
a procedure X allows access only to those internal quantities of X 
which are quoted as actual operands in at least one call of Y. 

As an example, the variable u, which is local to the body of procedure 
orth (d. 48.3.2), is not quoted as actual operand in a call of cont. De­
claring the actual counterpart of cont as 

«procedure c3(nr, k, p, n, a, r, label) ; 
value nr ; 
integer nr, k, p, n ; array a, r ; label label ; 

if nr= 2 then begin line; print (k) ; print (u) end )1 

n 

would therefore not have the effect of printing u = L a [i, k JP, as it 
<=1 

might be hoped, but would instead print the value of a variable u 
existing outside orth, or produce an undefined effect. 

Likewise, we could not enforce a jump to the label loop via the 
parameter procedure cont since loop is not quoted as actual parameter 
of cont. 

1 For the meaning of procedures line, print see 43.2. 



Chapter VIn 

Input and Output 
No ALGOL program is complete without providing for transfers of 

initial data and final results from and to the outside world. In ALGOL 
such transfers may be done either by code procedures which have been 
designed for that purpose (see, for instance, the so-called Knuth report 
[22J), or through the standard I/O-procedures insymbol, outsymbol, inreal, 
outreal, inarray and outarray. These latter we are now going to describe. 

§ 49. The Standard I/O-Procedures of ALGOL 

At a meeting held in March 1964 at Tutzing, Bavaria, the IFIP 
Working Group on ALGOL (WG 2.1) decided that six standard procedures 
for describing input- and output-operations in an abstract manner (i.e. 
without reference to specific devices) should be added as fixed con­
stituents of the language!. In the future, therefore, these procedures 
may, like the standard functions sin, cos, etc., be called in an ALGOL 
program without being declared there. In fact, it is as if corresponding 
declarations had been given in a block embracing all ALGOL programs. 

49.1. Syntax 

Although the declarations for the six standard I/O-procedures never 
do actually appear in an ALGOL program, we can, nevertheless, exhibit 
these declarations in order to specify the conditions which must be met 
by corresponding calls 2 : 

« procedure insymbol (a, b, c) 
value a; 
integer a, c ; string b ; 
code)}. 

« procedure outsymbol (a, b, c) 
value a, c ; 
integer a, c ; string b ; 
code)}. 

1 See [21]. Meanwhile this decision has been confirmed by the IFIP council 
(meeting held at Prague. May 16,1964). 

2 It should be recognized that in the SUBSET the names of these six procedures 
are equivalent to insymb, autsym, inreal, autrea, inarra, au/arr, respectively, which 
therefore should be considered as reserved names. 

15* 
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«procedure inreal(a, b) ; 
value a; 
real b ; integer a ; 
code)}. 

« procedure outreal (a, b) ; 
value a, b ; 
real b ; integer a ; 
code)}. 

« procedure in array (a, b) ; 
value a; 
integer a ; array b ; 
code)}. 

« procedure outarray (a, b) ; 
value a ; 
integer a ; array b ; 
code». 

Here the symbols «code» denote the respective procedure bodies, 
which of course cannot be described directly in terms of ALGOL but are 
primitives of the ALGOL language itself. 

49.2. Semantics 

The precise meanings of these standard I/O-procedures are defined 
by describing the effect of corresponding calls: 

49.2.1. A call «insymbol (a, b, c)) reads the next symbol from an input 
medium designated by the value of a and compares this symbol to the 
sequence of basic symbols contained in the string b. If the symbol 
matches the k-th symbol in the string b (counting from left to right, 
beginning with 1), then the value k is assigned to the variable c. However, 
if the symbol read from the medium does not match any of the symbols 
contained in the string b, then the value 0 is assigned to c (see, however, 
49.4.2). 

49.2.2. «outsymbol (a, b, c)} records the c-th basic symbol contained in 
the string b (counting as in 49.2.1) on an external medium which is 
determined by the current value of a (see, however, 49.4.2). 

49.2.3. «inreal (a, b)) reads the next following number from an external 
medium designated by the current value of a and assigns this number 
to the variable b. 

49.2.4. (<outreal (a, b)) records the value of b on an external medium 
which is selected according to the current value of a. 
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49.2.5. «inarray(a, b))> reads real numbers one by one from an external 
medium defined by the value of a and assigns these numbers to the 
components of the array b (Exactly as many numbers are read from 
the external medium as are needed to fill the array b). 

49.2.6. (<outarray (a, b))> records all components of the array b on an 
external medium designated by the value of a. 

49.2.7. It is explicitly understood that reading by inreal and recording 
by outreal are compatible operations such that e.g. a number recorded 
via outreal can be read again through inreal (the same is true for the 
pairs insymbol/outsymbol and inarray/outarray). Furthermore, it is as­
sumed that inreal and outreal are also compatible with inarray and 
outarray in the sense that e.g. numbers recorded via outreal can be 
read again by inarray. 

49.3. Further remarks 

49.3.1. Since real type numbers and variables are involved in the pro­
cedures inreal, outreal, in array, outarray, the remarks concerning com­
puter limitations (d. 8.2) apply also here. 

49-3.2. For in array and outarray the order in which the components 
of the array b are transferred is defined to be what for matrices (two­
dimensional arrays) is usually called "row-wise". More precisely: 
b [iI' i2, ... , ipJ is transferred before b [j1' j2' ... , jPJ provided we have 
for some h~P: 

i l = jl for 1 = 1, 2, ... , h - 1 , but i h < ih' 

Moreover, these procedures always transfer all components of the 
array appearing as the second actual operand. 

As a consequence, a call (<outarray(15,p))>, where p is declared e.g. 
as «array P[ -4:5,1 :50, 0:20J», is equivalent to 

«for j1 : = - 4 step 1 until 5 do 
for j2: = 1 step 1 until 50 do 

for j3:= 0 step 1 until 20 do outreal(15, p [j1, j2, j3J) ». 

49.3.3. It is explicitly understood that calls of the six standard 1/0-
procedures automatically include the movement of the external medium 
in order to make it ready for input or output of the next item. Of course, 
where the external medium is for instance a magnetic drum, the move­
ment means simply stepping a counter. 

49.3.4. The channel number appearing as the first parameter in all 
standard I/O-procedures should be understood in the most general sense. 
In actual computing it may mean a paper tape punching or reading 
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station of the computer, or an addressed section of a magnetic tape 
or disc file (in the latter case the address is part of the channel number). 

49.4. Control operations 

49.4.1. The IFIP convention. Through one of the examples given in the 
IFIP report [21J, the latter implicitly states that if input is done via 
a channel which previously had been used for output, the channel is 
reset into a position following that data which had been read most 
recently through that channel. Likewise, if we switch from input to 
output on the same channel, the new output is positioned after the 
most recent output. Thus a sequence of input- and output-operations 
on the same channel, e.g. 

out, out, out, in, in, out, out, out, in, in, out, out, 
out, in, in, in, in, out, in, in, 

will initiate the following movements of the reading and recording mech­
anism associated with this channel: 

V 1/ 
V [/ 

[7 V 
17 V 

V V 
17 1/ 

17 1/ 
1/ V 

17 17 
17 17 . . . . . . .. 
~~~mm~~~mm~~~mmmm~mm 

I/O-opera/ions performed 

Fig. 42 

Since after this, all recorded items have been read again, an output 
operation must now follow, otherwise the further course of the process 
would be undefined. 

By this convention it is obviously impossible to read a recorded 
item twice, i.e. it is as if the information on the external medium were 
destroyed upon reading. If repeated reading is desired, we have to adhere 
to the convention of 49.4.2. 

49.4.2. Explicit resetting 01 a channel, but also operations such as carriage 
return and line feed of a console typewriter, can be performed with the 
aid of procedure outsymbol just by giving the third actual parameter a 
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negative value. As an example, 

«outsymbol (15, 'rewind tape 15', -13)) 1 

may cause rewinding of tape 15. Similarly, setting of an "end of file" 
mark may be done in this way. The IFIP resolution explicitly permits 
such operations but does not prescribe any details, which therefore are 
entirely in the hands of the implementors. 

However, for the purposes of the present chapter the following con­
vention on control operations is adopted: 

Value of the 
third parameter 
c of outsymbol 

2 

3 

-11 

-12 

-13 

Control operation associated with the 
value c 

Setting a mark .. end of record" 
(For a printer: new line) 
Setting a mark .. end of file" 
(For a printer: new page) 
Setting a mark" third order end" 

Reset channel to most recent mark 
.. end of record" 

Reset channel to most recent mark 
.. end of file" 

Reset channel to most recent mark 
"third order end" 

It is assumed that "end of record" and "end of file" marks are 
skipped on all input operations except in calls of insymbol, in which 
case the corresponding negative values are produced and assigned to 
the variable appearing as the third actual operand. It is furthermore 
assumed that resetting a channel, e.g. by -11, puts the corresponding 
mechanism into a position immediately in front of the respective mark, 
in order that a further reset operation spaces the mechanism back by 
another record. Finally, where no mark corresponding to a reset operation 
can be found, the whole channel is reset. 

49.4.3. Combinations ot explicit and implicit resetting. After resetting a 
channel explicitly, e.g. by (<outsymbol(ch, 'f', -12) », we may later use 
that channel according to the IFIP convention. However, where a 
channel is reset explicitly as above by (<outsymbol(ch, 'f', -12)) after 

1 If c is negative, the contents of the string appearing as second actual operand 
are irrelevant and have the same effect as a comment. 
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having been used with implicit resetting (i.e., under the IFIP conven­
tion), all information previously recorded on this channel following the 
corresponding "end of file" mark must be considered as having been 
destroyed. 

49.5. The I/O-procedures of § 43 

The previously used I/O-procedures line, print, read, prtext can now 
be expressed in terms of the standard I/O-procedures: Assuming that 
channel 2 is associated permanently with a printer, channel 1 with a 
paper tape reader, we obtain: 

«procedure line; outsymbol (2, 'carriage return', -1) >}, 

«procedure print (x) ; 
value x; 
real x ; 
outreal (2, x) >}, 

« procedure read (x) ; 
real x ; 
inreal(1, x) >}, 

« procedure prtext (s) 
string s ; 
begin 

integer k, I ; 
1:= length(s) ; comment length is a standard function; 
for k:= 1 step 1 until I do outsymbol(2, s, k) 

end prtext >}. 

It is probably worthwhile to mention that in the last example 
«length (s) >} computes the length of the formal string s (i.e. the number 
of symbols contained in this string), whereupon outsymbol is called once 
for every k = 1,2, ... , I, producing for every k the k-th basic symbol 
of s as output. Thus on the whole, string s is written by the printer 
associated with channel 2. 

§ 50. Applications of Procedures insymbol, outsymbol 

Since the procedures insymbol and outsymbol give access to single 
characters on the external medium, it is obvious that they can be used 
to perform all sorts of data processing operations. 

50.1. Input and output of pseudostrings 

If a [O:bigmJ is a pseudostring according to the conventions of § 37, 
it can be output by the following statement: 
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dor k : = 1 step 1 until a [0] do 
outsymbol(channel, '012 ... XYZ', a[k]))), 

in which '012 . .. XYZ' is supposed to be the string of all basic symbols 
of ALGOL in the same order as shown by the correspondence table in 
37.1. Indeed, according to the definition of outsymbol, this piece of 
program picks up the components of the pseudostring a one by one and 
if e.g. a[k]=i, searches for the i-th basic symbol in the string '012 
... XYZ' and records it via channel channel. Thus, obviously, the 
pseudostring a is output as an actual string of symbols. 

In order that the lengthy string '012 ... XYZ' of 116 symbols need 
not be written anew for every output operation, a procedure pstout for 
performing output of a pseudostring, including an "end of record" 
mark at its end, may be written as follows: 

«procedure pstout(channel, a) ; 
value channel; 
integer channel; integer array a ; 
begin 

integer k ; 
for k : = 1 step 1 until a [0] do 

outsymbol(channel, '012 ... XYZ', a[kJ) ; 
outsymbol (channel, 'end 0/ record', -1) 

end pstout). 

Input is somewhat more complicated, since we cannot assume that 
on the input medium the number of characters is given in front of the 
data. Instead, we require that the data be terminated by an "end of 
record" mark yielding upon input the integer value -1 (d. 49.4.2). 
With this convention we obtain: 

« procedure pstin (channel, a) ; 
value channel; 
integer channel; integer array a ; 
begin 

integer k, aux ; 
k:=O; 

ziv: k : = k + 1 ; 
insymbol(channel, '012 ... XYZ', aux) ; 
if aux=-1 then a [0] := k-1 
else 

begin a[k] := aux ; goto ziv end 
end pstin). 



234 VIII. Input and Output 

50.2. Punched card reading 
For reading from and recording on discontinuous media such as 

punched cards, a slightly different approach is more appropriate. Indeed, 
a punched card is in a certain sense one unit of information, and there­
fore the card structure should not be lost automatically upon input 
into the computer. To this end we insert, after reading of one card, 
an "end of record" symbol (- 1 in our representation) into the generated 
pseudostring. At the same time we have to observe that only the first 
p columns of one card contain relevant information, while columns 
p + 1 through 80 are used for identification (usually p= 72, but we leave 
p variable). 

In the following we make the assumption that a call (wutsymbol (cr, 
, u', -i)} causes the card reader designated by the current value of cr 
to feed one card, and that the subsequent calls of insymbol read the 
columns of the new card one by one from 1 through 80 (If we attempt 
to read more than 80 columns, the further action of the program is 
undefined) . 

Under these hypotheses the following procedure incard reads a deck 
of cards and places the data into the pseudostring a [O:bigmJ occurring 
as the fourth formal operand. The reading is terminated as soon as an 
"end of file" mark is found on one card or if the pseudostring is ex­
hausted, in which case a jump to the formal label full occurs. In both 
these cases the last card is ejected and no further action is taken1 : 

« procedure incard (cr, bigm, P) res: (a) exit: (full) ; 
value cr, bigm, p ; 
integer cr, bigm, p ; integer array a ; label full ; 
begin 

integer j, k, l, aux ; 
for k:= 0, l while l<bigm do 
begin 

for j:= k+1 step 1 until k+P do 
begin Read one card, k de-

insymbol(cr, '012 ... XYZ', aux) ; notingpositionofthe 

sl: a [iJ : = aux ; last element of the 
l : = i ; previous card in the 

if j = bigm V aux = - 2 then goto finis array a. 

end j ; 
l : = l + 1 ; I Manipula-

s2: a [lJ . = -1 . tion~ after 
. , readmg full 

jf l =t=bigm then outsymbol(cr, 'cardfeed', -1) card. 

end k ; 
1 Here again' 012 ... XYZ' stands for the string of all basic symbols of ALGOL. 
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finis: a [0] := l ; 
outsymbol (cr, 'eject last card', - 1) ; 
if aux =\= - 2 then goto full 

end incard). 

235 

If it is desired to store the information in packed form (d. 37.5), we 
need only replace the statements sl and s2 in the above program by 

«pack (aux, j, a))) and «pack (-1, l, a))) 

respectively, assuming that the packing includes transformation of neg­
ative integers into complementary form, e.g. -1 into 127. 

50.3. Simulation of an output buffer 

Let us assume that an output buffer region has been reserved by 
declaring a two-dimensional array buffer at the beginning of the whole 
program: 

«integer array buffer [1 :25, 0:120] )1. 

It is assumed that every row ofthis array, i.e. the components buffer [i, 1] 
through buffer [i, 120], contains one record whose actual length is given 
by the component buffer [i, oJ. 
50.3.1. To output rows a through b of this buffer via channel ch, the 
following procedure may be declared: 

«procedure outbuf(ch, a, b) ; 
value ch, a, b ; 
integer ch, a, b ; 
comment uses global operand: integer array buffer; 
begin 

integer i, j ; 
for i:= a step 1 until b do 
begin 

comment output of one line of the buffer; 
for j: = 1 step 1 until buffer [i, 0] do 

outsymbol(ch, '012 ... XYZ', buffer[i, j]) ; 
outsymbol(ch, 'end of record', -1) ; 

blanks: for j: = 1 step 1 until 120 do buffer [i, j] : = 42 
end i 

end outbuf). 

1 It is agreed that usually this extra storage requirement of 3025 storage 
positions cannot be afforded. However, it is assumed that in practice the data 
would be packed. What we show here must therefore be understood as a model 
for a more efficient setup. 
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Note that after output of one row of the buffer has been performed, 
an "end of record" mark is placed on the external medium, whereupon 
that row of the buffer is filled with blanks (statement blanks). 

50.3.2. Let us now assume that we have a code procedure dataps for 
transforming numerical values (according to a given format I) into deci­
mal data in pseudostring notation: 

«procedure dataps(x, I) res: (w) ; 
value x ; 
real x ; integer array w ; string I ; 
code». 

Here x denotes the number to be transformed, w the resulting equivalent 
in pseudostring notation, and I indicates the format into which x should 
be brought. The meaning of I is exhibited by the following example: 
The string 

, x= u +099.999u u' 

means that e.g. the value 3.1415926535100 should be output as 

Ix = +03·142 I· 
50-3.3. In order to perform output of numerical data by means of dataps, 
the latter is incorporated into a procedure insert which allows inserting 
the converted data into the buffer (of course, in practice we would 
declare the combination datapsfinsert directly as a code procedure): 

« procedure insert (x, I, a) trans: (b) ; 
value a, x ; 
integer a, b ; real x ; string I ; 
comment uses global operand: integer array buller; 
begin 

integer k ; 
integer array w[O:length(l)] ; 
procedure dataps (x, I) res: (w) ; 

value x ; 
real x ; integer array w ; string I ; 
code; 

dataps (x, I) res: (w) ; 
for k:= 1 step 1 until length (I) do 

buller [a, b +k-1]:= w[kJ ; 
b : = b + length (I) 

end insert». 

Obviously this procedure has the effect that the decimal form of x 
is inserted into line a and columns b, b + 1, ... of the buffer, whereupon 
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b is increased by the length of the inserted string such that it is just 
ready for the next output. However, it is up to the user to check whether 
the insertion is really inside the buffer and does not overwrite any other 
information. 

50.3.4. As an example, let us draw a curve y=f(x) with the convention 
that y=PX lO-2+qxlO-3 (P,q integer) be printed as the digit q in 
the p-th column of a line printer, while the argument x is recorded at 
the extreme left or right of every line, depending on where the curve 
runs: 

« ; comment buffer is assumed to be filled with blanks and 
buffer[k, OJ =120 for k=1, 2, ... ,25 ; 

for x:= 0, x while x< a do 
begin 

for k : = 1 step 1 until 25 do 
begin 

y:= 1ooxf(x); 
p:= entier(y) ; 
q : = entier ( 10 X (y - P)) ; 
buffer[k, PJ := q +1 ; 
l:= if p> 50 then 5 else 95 ; 
insert (x, '009.99999', k) trans: (l) ; 
x:= x+h; 

end k; 
outbuf(15, 1,25) ; 
comment it is assumed that channel number 15 corresponds to a 

line printer; 
end x». 

50.3.5. Further example: computation and printing of the first 20 lines 
of the Pascal triangle (also given as an example at the end of the Knuth 
report [22J): 

« ; comment buffer is assumed to be filled with blanks and 
buffer [k, OJ = 120 for k = 1,2, ... , 25 ; 

begin 
integer f, k, l ; 
integer array p [-1: 19J ; 
P[-1J:=O; 
for f: = 0 step 1 until 19 do 
begin 

comment produce f +1-th line of Pascal triangle; 
l:=58-3xf; 
p[fJ:=1; 
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fork:=j-1step-1 untilodoP[kJ:=P[kJ+P[k-1J; 
for k:= 0 step 1 until i do 

insert (P [k J, ' u 00009', i + 1) trans: (l) 
end i ; 
outbu/ ( 15, 1, 20) ; 
comment it is assumed that channel number 15 is associated with 

a 120-column line printer; 
end>}. 

§ 51. Use of inarray, outarray for Auxiliary Storage 

For solving numerical problems involving large arrays that cannot 
be held in the high speed store, the standard procedures inarray and 
outarray, together with the control operations mentioned in 49.4, prove 
extremely useful. In all examples given here, we shall use the convention 
of 49.4.2 (explicit resetting). 

51.1. Choleski decomposition of a large matrix l 

51.1.1. Let a [1 :n, O:mJ be an array representing a symmetric n-th order 
bandmatrix (that is, one with a i k=O for Ii -kl >m) in the usual band­
matrix representation (d. 36.6). a[i, kJ therefore denotes the matrix 
element in the i-th row and i + k-th column. It is assumed that m is 
small compared to n, a representative example being n=2000, m=50. 

The elements of the array a[1 :n, O:mJ are assumed to be recorded 
row by row, i.e. in the order 

a[1, OJ, a[1, 1], ... , a [1, mJ, a [2, OJ, ... , a [2, mJ, a [3, OJ, ... , a en, mJ, 

as real numbers on a tape corresponding to channel number 56. 

Note that the elements a [i, kJ with i+k> n, which do not correspond 
to proper matrix elements, must be recorded as zeros. 

Our task is to decompose the matrix A represented by the array a 
into A = RT R, where R is an upper triangular matrix represented as 
an array r[1 :n, O:mJ. Thus bandmatrix notation is used also for R, but 
whereas for both matrices R and A the subdiagonal elements need not 
be considered, this has different reasons; indeed, the subdiagonal ele­
ments of R vanish, while A is symmetric. 

51.1.2. The present program is designed such that the array a is read 
into the computer row by row, the elimination process executed for 
every row of a, and the resulting rows of r again recorded on a tape 
associated with channel number 57. To compute the elements of r, the 
contributions that must be subtracted from a [i, k] in the elimination 

1 Compare also section 6.3 in [44]. 
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process are collected in the component z[i, kJ of an auxiliary array z. 
As a consequence, we have 

r [i, OJ : = sqrt (a [i, OJ - z [i, OJ) ; 
rei, kJ:= (a[i, kJ -z[i, kJ)/r[i, OJ ; (k=1,2,3,· .. ,m). 

After computing these components, we add the products r [i, P] X 

rei, qJ toz[i+p, q-PJ, and this for allp=O, 1, ... , m, q=p,P+1, ... , m. 
In our program, however, we shall avoid the occurrence of both the 
arrays a and r and store at anyone time only one row of a or r. For 
this purpose we declare an array b [0: m J. 

Unfortunately, it appears now that in our program the array 
z[1 :n, O:mJ must be declared, which is just as big as a. This waste of 
storage space can be avoided, however, if we make use of the fact that 
by virtue of the bandform the elimination process involves at any mo­
ment at most m + 1 rows of the matrix a. Accordingly, it suffices to 
declare the array z as «array z[1 :m, O:mJ », the rows of which are used 
cyclically. More precisely, what before was stored as z [i, t] will now be 
stored as z[s, tJ, where 

s=i(modulom), and 1~s~m. 

51.1.3. With this, the following program is obtained: 
«begin 

integer i, j, k, 1, p, t, s ; 
array b [O:mJ, z[1 :m, O:mJ ; 
p:= 1 ; 
outsymbol(56, 'rewind A-tape', -12) ; 
outsymbol(57, 'rewind R-tape', -12) ; 
for i:= 1 step 1 until m do 

for j:= 0 step 1 until m do z[i, j]:= 0 ; 
grand loop: 

for k:= 1 step 1 until n do 
begin 

inarray (56, b) ; { Read in k-th row of 
matrix A. 

for j:= 0 step 1 until m do 
b[j]:= b[j] -z[P, j] ; 

if b[OJ~O then 
begin 

for j : = 1 step 1 until 28 do 
outsymbol (15, 'matrix u not u positive 

u definite', i) ; 
goto exit 

end if ; 
b[O]:= sqrt(b[OJ) ; 

Measures taken if 
matrix A is not posi­
tive definite (this is 
signaled by a non­
positive b [OJ). 
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for j : = 1 step 1 until m do 
b[j]:= b [j]jb [0] ; 

outarray(57, b) 
outsymbo1(57, 'end of record', -1) ; 

loutput of k-th row of 
matrix R together 
with subsequent 
.. end of record" 
mark. 

Clear p-th row of ma-

. • . the k-th row of the !triX Z (this would be 

for 1:= 0 step 1 until m do z[P, 1]:= 0; array z[1 :n, O:m] in 

1:= 0; 
for s:= P+1 step 1 until m, 

begin 
1:=1+1 

1 step 1 until p do 

for t:= 0 step 1 until m-1 do 
z [ s, t] : = z [ s, t] + b [I] X b [I + t] ; 

end s ; 
P:=P+1 ; 
if p>m then p:= 1 

end k ; 
outsymbo1(57, 'rewind R-tape', -12) ; 

exit: 
end of program)}. 

the noncyclic arran­
gement). 

This is the addition 
of r[i, P] xr[i, q] to 
z[i+P, p-q], but 
transcribed into the 
cyclic arrangement. 

51.1.4. After termination of this program, the matrix R is in band­
matrix notation on tape 57, which is already rewound and therefore can 
be used immediately for solving the linear system 

Under the assumption that the constant terms are already stored as a 
one-dimensional array c [1 : n], the following piece of program computes 
the solution x and prints it via channel 15 : 

«begin 
comment forwardsubstitution ; 
array b[O:m] ; 
for k:= 1 step 1 until n do 
begin 

inarray (57, b) ; 

c[k]:= c [k]jb [0] ; 
max:= if k+m>n then n-k else m ; 

{Read k-th row of 
matrix R. 
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for j : = 1 step 1 until max do 
c[k+jJ:= c[k+iJ -b[jJ xc[kJ ; 

end k; 
comment backsubstitution ; 
for k:= n step -1 until 1 do 
begin 

outsymbol(57, 'rewind R-tape to begin 01 
row k', - 11) ; 

inarray (57, b) ; 

max:= if k+m>n then n-k else m ; 
for j : = 1 step 1 until max do 

c [k J : = c [k J - c [k + jJ X b [j] ; 
c[k]:= c [k]/b [0] ; 

{ Read k-th row of 
matrix R. 

outsymbol(57, 'rewind R-tape to begin 01 row k', -11) ; 
end k; 
outsymbol (15, 'new page', - 2) ; 
forj:= 1 step 1 until 8, -1 do outsymbol(15, 'solution',j); 
outarray(15, c) ; 

end>}. 

51.2. High order qd-algorithm 
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51.2.1. One step of the qd-algorithm, more precisely of its progressive lorm 
which allows the computation of eigenvalues (d. [31J), can be described 
by the following statements: 

«q[l]:= q[l]+e[l] ; 
fork:=l step 1 untiln-l do 
begin 

e[kJ:= (e[kJ/q[k]) xq[k+1] ; 
q[k+1]:= (q[k+1]-e[kJ)+e[k+1J 

end>}. 

Here n denotes the order of the qd-table and e [n J is assumed to be 
zero. Note that the q- and e-values of the new line have the same names 
as those of the original qd-line; the original values are therefore destroyed. 

If the above piece of program is executed iteratively, then the e's 
converge to zero and the q [k] to the desired eigenvalues provided certain 
conditions are fulfilled (for instance, if at the beginning all q's and e's 
are positive). It is this fact which makes the qd-algorithm feasible for 
computing eigenvalues of tridiagonal matrices and poles of continued 
fractions. 
51.2.2. However, in certain applications the order n is so high that the 
use of auxiliary storage must be envisaged. To this end it is assumed 
that initially the given q- and e-values are recorded interlaced on a 

16 Rutishauser, Description of ALGOL 60 



242 VIII. Input and Output 

magnetic tape: 

q[1J, e[1J, q[2J, e[2J, ... , e[n-1], q[nJ, e[nJ=O. (1)1 

Furthermore, we require that all q- and e-values be positive because 
otherwise numerical instability and other troubles might occur. To per­
form one step of the qd-algorithm we take the elements of the interlaced 
array (1) into the computer in groups of 1000, apply the qd-formulae 
to these and put the new q- and e-values back onto another tape, which 
after a full step contains the elements of the new qd-line. In the next 
step we operate from the second tape back to the first, etc. 

The formulae used are essentially the same as in 51.2.1, except that 
the 1000 elements read in are stored as one array qe [1: 999J plus one 
simple variable e, both together containing 500 q- and e-values. The 
extra variable e is needed to make the connection with the next group 
of 1000 elements. In order to exhibit the details, we picture the operations 
to be performed by means of the rhombus rules 2 : 

First group of 1000 elements Second group of 1000 
elements qe [1] 

e=O qe [2] 
qe[1] qe[3] 

qe[2]. qe[4J. 
• 'q=qe[999] 

e 
• q = qe [999] qe [1] 

e qe[2] 
qe [ 1] qe [3l. 

qe[2]. 

Fig. 43 

As is obvious, the transition from group to group requires special 
care insofar as the new qe [999J cannot be computed before e has been 
read in, while at the same time the new e depends upon qe [1 J of the 
next group. Accordingly, in- and output of the components of qe and 
of the variable e must occur in appropriate order. 

The following procedure qdtape executes one full qd-step, that is, it 
computes for given q- and e-values read from a tape a the q- and e-values 
for the next qd-line and records them on a tape b. On both tapes the 
ordering is supposed to be the same as in (1). 

« procedure qdtape (n, a, b) ; 
value n, a, b ; 
integer n, a, b ; 

1 e [n] must always be zero. 
2 For the definition of the rhombus rules see § 5 in [35]. 
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begin 
integer k, j, P ; 
real q, e ; 
outsymbol(a, 'rewind tape a', -12) ; 
outsymbol(b, 'rewind tape b', -12) ; 
for k: = 0 step 1000 until 2 xn-3 do 
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loop: begin p = number of elements in 
the next group to be read. 
For every group, p is chosen 
such that p = 1000, except 

16' 

p:= if2xn-k~1002 
then 2 xn-k else 1000 ; 

} 
for the last group, which 
may contain between 4 and 
1002 elements. 1002 is cho­
sen as upper limit in order 

begin 

to avoid the last group con­
taining only 2 elements since 
this would cause trouble. 

array qe[1 :P-1J ; 
inarray (a, qe) ; Read bulk of group. 

Rhombus rule for 
e : = if k = 0 then 0 else (eJq) X qe[ 1 J ;} last element e of pre­
if k =1= 0 then outreal (b, e) ; vious group and out­

put of the new e. 

qe[1J:= (qe[1J-e)+qe[2J ; 
for j : = 2 step 2 until P-4 do 
begin 

qe[jJ:= (qe [jJJqe [j-1J) 
xqe[j+1] ; 

qe[j+1]:= (qeU+1J-qelj]) 
+qe[j+2] 

end j ; 
qe[p-2]:= (qe[p-2]Jqe[p-3]) 

xqe[p-1] ; 

inreal (a, e) ; 
q:= qe[p-1J:= 

(qe[p-1J-qe[p-2J)+e; 

outarray (b, qe) 

end block 
end k ; 

outreal (b, 0) ; 

end qdtape)}. 

Rhombus rules for 
bulk of group. 

Take in the last ele-I ment e of group, ap­
ply rhombus rule to 
the last q-element 
(qe [P - 2J) of the 
group. 

{Output of bulk of 
group. 

{Output of last ele­
ment e of group. 
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To use this procedure, it is called repetitiously, whereby the user 
must interchange the values of a and b for every call. 

51.3. Matrix inversion by the escalator method 

51.3.1. Let A be an infinite symmetric matrix, all finite principal sub­
matrices of which are positive definite. We want to invert a finite 
section An consisting of the first n rows and columns of A. If n is not 
known a priori but depends on the behavior of A;;-l as n-+ 00, then by 
virtue of rule 39.3.3 a difficulty arises insofar as n is unknown at the 
moment the array a[1 :n, 1 :nJ carrying the elements of An should be 
declared. 

In full ALGOL there is a device which allows overcoming this difficulty, 
namely the own-feature1 . Unfortunately, however, most implementors 
of ALGOL exclude just that part of this feature which could help in this 
problem, namely the so-called dynamic own-arrays. 

We can, however, solve our problem by means of the standard 1/0-
procedures. To this end we choose the escalator method for inverting An 
since this method allows to compute all inverses All, A 21, Ail, ... , A;;-l 
one after the other with an effort that is proportional to n3 . We can 
therefore continue the calculation just as long as it is necessary to 
achieve the desired effect. 

51. 3.2. The numerical process can be described as follows: Let 

-1 {X Iy} Ak = yT --; , 

while A;;21 =F is already known. Here 

F, X, Ak - 1 are (k-1) X (k-1)-matrices 
............... 
w, h,y 
s, c, z 

are (k-1)-vectors 
are scalars. 

Then with w =Fb, s=bTw, we have 

z=1/(c-s), 
X=F+zxwx1J7, 
Y=-zxw. 

In designing the program, we must be aware that k can run to such 
high values that storing a k X k-matrix becomes impossible; therefore 
we must keep all matrices on tape, reading only row- or column-vectors 
into the high speed storage. 

1 Since the own-feature is not treated in this Handbook, the reader is referred 
to other books on the subject, e.g.: [53]. 
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In contrast to earlier examples, we now make a more sophisticated 
use of the channel number: Indeed, it is assumed that at the beginning 
of step k the elements of F=A;;.!1 are on external media such that (for 
every l = 1,2, ... , k - 1) the elements 

Ill, 112, 113' ... , III 

are ready for input through channel 100+l. Note that F is symmetric 
so that the superdiagonal elements need not be given. 

Now we proceed as follows: The elements ak1 , ak2 , ••• , akk of the 
k-th line of the matrix A are generated and assigned to the array b [1: k] 
by a generator procedure gener. Then the elements of F are read in 

row by row, and at the same time the product iF =F b is computed and 
stored as an array y [1: k -1]; after that, z and s are computed. Then 
the elements of F are again read in row by row but this time for com­
puting X, the rows of which are again recorded row-wise, namely the 
l-th row via channel 100+l. Finally the vector y, which is the k-th 
row of A;;\ is computed and recorded via channel 100+k. This com­
pletes step k. 

51.3.3. Our program is designed as a procedure escal, whose formal 
operands n, gener, stop, have the following meaning: 

«integer n» indicates at the beginning the maximum value which k 
should attain and after termination of the process the last value of k; 
it is therefore the order of the last inverse A ;;1. 

«procedure gener(n, x) ; value n ; integer n ; array x ; code» 

is a procedure with the property that «gener (k, b)} generates the values 
b[1], b[2], ... , b[k], which are the subdiagonal and diagonal elements 
of the k-th row of A (b [i] is in fact a [k, i]). 

« Boolean procedure stop (k, l, al) ; 
value k, l ; integer k, l ; arrayal; code» 

serves to make a decision for terminating the process. The values 
al[1], al[2], ... , alil], which are the diagonal and subdiagonal elements 
of the l-th row of A;;l, can be used to make the decision. 

With these hypotheses the following program emerges: 

«procedure escal(gener, stoP) trans: (n) ; 
integer n ; procedure gener ; Boolean procedure stop; 
begin 

real s, Z ; 

integer k, l, j ; 
for k:= 1 step 1 until n do 
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begin 
arrayb,y[1:k] ; 

gener (k, b) ; { Generate k-th row of 
matrix A. 

{
Reset channel for re­

outsymbol{100+k, 'rewind row k', -12) ; cording k-th row of 
A -l 

k . 

for 1 : = 1 step 1 until k do y [l] : = 0 ; 
for l:= 1 step 1 until k-1 do 
begin 

arrayal [1 : l] ; 
inarray (100 + l, al) ; 
if stop (k-1, l, al) then goto finis; 
for j: = 1 step 1 untill-1 do 

y [j] : = y [j] + al [j] x b [l] ; 
for j : = 1 step 1 until 1 do 

y [l] : = y [l] + al [j] X b 11] ; 
outsymbol(100+l, 'rewind row 1', 

end l; 
s:= 0; 
for j: = 1 step 1 until k-1 do 

s : = s + b [j] xy [j] ; 
z:= y[k]:= 1/(b[k] -s) ; 
for l: = 1 step 1 until k-1 do 
begin 

real zl ; 
arrayal [1 : l] ; 
inarray (100 + l, al) ; 
zl:= zxy[l] ; 

-12) ; 

.... .... 
Compute y =Fb tak-
ing into account the 
special arrangement 
of matrix F on the 
external medium. 

) C=pu'e, 

{Read l-th row of 
matrix F. 

. • Compute l-th row of 
for 1 : = 1 step 1 untIl 1 do 1 matrix X record this 

al [j] : = al [j] + zl X Y [j] ; row via channel 
outsymbol{100+l, 'rewind row l', 100+1 (thus over-

-12); writing l-th row of 

( 1 l) ' matrix F) and reset 
outarray 100 + ,a , thO hI' 

IS C anne agam. 

outsymbol(100+l, 'rewindrowl', -12) ; 
end l; 
for j: = 1 step 1 until k-1 do 

y[j]:= -zxy[j]; 
t (1 00 + k ) . {Record k-th row of ou array ,y , t' A-1 

b l( k " d k' ) rna nx k • 01Jtsym 0 100 + , rewtn row ,-12 ; 
end k ; 
goto out; 
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finis: n:= k-1 ; 
out: 

end escal). 
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Note that after termination, all channels 1 through n, which contain 
the rows 1 through n of the inverse of the matrix An' are reset. 

51. 3.4. How should this procedure now be used? 

As an example, let the infinite matrix A be H +zI, where H is the 
Hilbert matrix and I the infinite unit matrix, while z is a real-valued 
parameter. Then if the process should be continued as long as the 
1, i-element of Ak1 (as a function of k) still changes its value, the 
actual counterparts of gener and stop must be declared as follows: 

«proceduregenerl(n, b) ; 
value n; 
integer n ; array b ; 
begin 

integer 1 ; 
for l:= 1 step 1 until n-1 do b[lJ:= 1/(l+n-1) ; 
b[nJ:= z+1/(2Xn-1) 

end gener). 
« Boolean procedure stopl (k, l, al) ; 

value k, 1 ; 
integer k, 1 ; arrayal; 
if k=O then 

begin x11:= 0; stoPl:= false end 
else 

if 1 = 1 A al [1J =l= x11 then 
begin x11:= al[1J ; stopl:= false end 

else 
if 1 = 1 then stoPl : = true 
else 

stop 1 := false». 
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§ 52. The Jensen Device 

In 37.5 and 47.4.2 difficulties were encountered when a procedure, 
originally designed for operating upon one-dimensional arrays, could 
not be used to perform the same actions upon rows or columns of two­
dimensional arrays. As mentioned already, this difficulty can be over­
come by means of the so-called Jensen device 1. Since this feature, though 
not possible in the SUBSET, is sometimes really useful, it will be de­
scribed here. 

52.1. The full name-concept 

The rather stringent rule of 45 -3.2 concerning actual parameters has 
a far less restrictive analogue in full ALGOL; indeed, if a formal parameter 
is called by name and specified as a simple variable, then in full ALGOL 
the corresponding actual parameter may (in contrast to the SUBSET) be 
an expression of the appropriate type. This has the consequence that 
by virtue of the substitution rule of 45.2.2 (which holds also in full 
ALGOL) this expression appears in the equivalence block wherever the 
formal parameter occurred at a corresponding place in the procedure 
body, e.g. 2 : 

Declaration: 
Call: 

«procedure x(a, b) ; real a, b ; a:= b)}. 
«x(c[k],P+1))}. 

Equivalence block: «begin real ce; c[k]:= (P+1) end)}. 

Alternatively, procedure nevint may be taken as declared in 44.7.4 
and called by 

«nevint (n, aa, bb, z) res: (c [k]))}. 

This call has the effect that the interpolated value is assigned directly 
to the subscripted variable. As we know, this is not possible in the 
SUBSET since there a subscripted variable cannot be used as actual 
counterpart of a formal parameter called by name. In the SUBSET there­
fore, the above operation must be done in two steps: 

<<nevint (n, aa, bb, z) res: (aux) ; 
c[k]:= aun. 

1 Proposed in 1960 by J. Jensen of the Regnecentralen, Copenhagen. 
2 Where the formal parameter occurs as a primary in an expression, the cor­

responding actual parameter must of course, after insertion into the equivalence 
block, also have the status of a primary. To this end, wherever needed, the actual 
parameter must be enclosed in parentheses before performing the substitution. 
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Of course, one must be very careful in using the full name-concept, 
since even in full ALGOL the equivalence block must in any case be a 
meaningful piece of program. Thus 

(<nevint(n, aa, bb,z) res: (a+b)) 

is not allowed since the last statement in the equivalence block would 
then become ({a+b:= y [n] »), which is complete nonsense. 

It would seem that a general rule to avoid such occurrences is that 
a general expression may appear as actual parameter in a procedure 
call only if the corresponding formal operand is an argument of the 
procedure. However, this is no longer possible in full ALGOL since there 
the classification of operands as arguments, transients, results and exits 
is not appropriate; in fact, we cannot even speak of operands of a 
procedure. This means that in full ALGOL the only criterion for the 
legality of a procedure call is that the equivalence block must become 
a meaningful piece of program. 

52.2. The Jensen device 

52.2.1. Let us declare a function procedure as follows: 

({ real procedure sum (a, b, c, d) ; 
real c ; integer a, b, d ; 
begin 

real s ; 
s:= 0; 
for d:= a step 1 until b do s:= s+c ; 
sum:= s 

end sum»). 

On first sight this does not make much sense; indeed, as long as we 
adhere to the SUBSET rule admitting only identifiers as actual counter­
parts of formal parameters called by name, a function designator 
({sum(w, x,y,z)) can only produce the value (x-w+1)xy (or zero). 

However, in full ALGOL sum may be called e.g. by 

({sum (1, n, 1/a[k], k)), (1) 

for which the substitution rule immediately yields the equivalence block 

({begin 
real s ; 
s:= 0; 
fork:=1step1 untilndos:=s+(1/a[k]); 
sum:= s 

end»). 

Accordingly, the call (1) computes i: ~. 
k~l ak 

----.-
substituted for c 
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The essential point (and the content of the Jensen device) is that the 
third actual parameter 1/a[kJ formally depends upon the fourth actual 
parameter k; however, since the latter undergoes changes during the 
execution of the procedure, 1/a[kJ also takes part in these changes and 
thus a nontrivial effect is achieved. 

52.2.2. In a similar way, an inner product procedure may be declared as 

«procedure innerp (n, x, y, s, k) ; 
value n ; 
real s, x, y ; integer n, k ; 
begin 

s:= 0; 
fork:=1 step 1 untilndos:=s+xxy; 

end innerp). 

Again this looks rather queer but makes sense as soon as one considers 

«innerp (k, P [iJ, q [1], x, i) ). 

Indeed, the corresponding equivalence block is 

«begin 
real ce ; 
x:=O; 
fori:=1 step 1 untilkdox:=x+pIJJxq[jJ 

end equivalence block), 

(2) 

and therefore the call (2) does exactly the same thing as the call 
«inner(k, p, q, x))) given in 44.1.3. However, innerp can be called just 
as well by 

«innerp(l, a[i, iJ, aU, kJ, t, i) ), 

for which the substitution rule yields the equivalence block 

«begin 
real ce ; 
t:= 0; 
for i: = 1 step 1 untill do t: = t + a [i, iJ X a IJ, k J 

end). substihrted ~ituted 
for x for y 

Thus, obviously, the call (3) achieves what was unable to be ac­
complished by means of procedure inner as declared in 44.1.3, namely 

I 

computing L a[i, iJ xa[i, kJ directly by a call of inner. (3) again ex­
i=1 

hibits the mechanism of JENSEN'S idea, namely that (as an example) 
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the second and third actual parameter formally depend upon the fifth 
actual parameter. 

52.2.3. In a similar way, the full name-concept can be applied to ex­
amples involving arbitrary functions: If it is desired to integrate a 
differential equation y'=/(x,y) by means of the Euler method (d. 
48.1.3), one can declare a procedure 

« procedure ieuler (x, h, p, /, y, yy) ; 
value h,p ; 
real h, x, /, y ; integer p ; array yy ; 
begin 

integer i ; 
for i:= 1 step 1 until p do 
begin 

yy[iJ :=y:=y+hx/; 
x:=x+h 

end i ; 
end ieuler». 

This procedure serves to integrate a differential equation y' = / (x, y) 
with given initial values x, y, in p steps of length h, yielding the solution 
in tabular form as an array yy[1 :PJ. However, here the function / is 
not to be defined as a function procedure but as an arithmetic expression 
to be given as actual counterpart of the formal parameter f. As an 
example, 

«ieuler (t, 0.01, 100, tt2+Pt2, p, q)) 

will integrate ~~ =t2+p2 in 100 steps of length 0.01, the current values 

of t, p providing the initial values, while the solution is stored as an 
array q [1: 100]. 

52.2.4. Thus this feature, called the Jensen device, is certainly an elegant 
instrument, but it should not be overlooked that - aside from questions 
of economy - it can be applied only in connection with procedures that 
have been designed especially with this application in mind. Indeed, 
let e.g. pp be a procedure with an array a as formal operand: 

« procedure pp (n, a) ; 
value n ; 
integer n ; real array a ; 
begin 

integer i, i ; 
for i:= 1 step 1 until n do 

for i:= 1 step 1 until n do 
a[i-jJ:= a[iJ xa[j] 

end pp». 
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For adapting this procedure to the Jensen device in order to allow 
that a sub array of an array of higher dimension than a may be used 
as actual counterpart of a, one must 

a) Not only replace every occurrence of a subscripted variable a [ ... ] 
by a simple variable a, but use different variables aI, a2, a3, ... for 
syntactically different subscripted variables corresponding to the array a. 

b) List all these variables aI, a2, ... as formal parameters of the 
procedure. 

c) List all internal variables of pp, as far as they occur in subscripted 
variables a [ ... J, as formal parameters of the procedure (this is required 
because of the rule given in 45.2.3). 

For the above procedure pp this would mean that it must be re­
written as 

«procedure if(n, aI, a2, a3, i, i) ; 
value n ; 
real aI, a2, a3 ; integer n, i, i ; 
begin 

for i:= 1 step 1 until n do 
for i:= 1 step 1 until n do 

a3:= al xa2 
end if». 

Now, if procedure if is to be called in such a way that the same 
effect as by a call «pp (n, a)) is achieved, one must write 

«ii(n, a [iJ, a [iJ, a[i-iJ, i, i) », 

but the same action can just as well be performed upon the l-th com­
ponent of a matrix b, namely by a call 

«jj(n, bel, iJ, bel, iJ, bel, i-iJ, i, i) ». 

This follows immediately from the substitution rule which in the latter 
case yields the equivalence block 

«begin 
integer nee ; 
nee:=n; 
begin 

for i : = 1 step 1 until nee do 
for i: = 1 step 1 until nee do 

b [l, i-iJ:= bel, iJ xb[l, iJ 
end 

end equivalence block». 
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It should be recognized, however, that the flexibility of the Jensen 
device allows a nearly unlimited number of other applications of pro­
cedure ii; as an example, the matrix a could be computed as the dyadic 
product of the vectors band c by a call 

«ii(n, b[P], c[q], a[p, q],P, q»). 

52.2.5. Disadvantages. On the other hand, the price to be paid for this 
extra flexibility is that the call of a procedure involving the Jensen 
device is complicated even if the extra flexibility is not needed. In fact, 
such a procedure statement can be written only with careful consideration 
of the procedure body, a necessity which not only contradicts the in­
tention of the procedure concept altogether, but may truly be a burden 
for a procedure with a very extended body. As a consequence it is re­
commended to use the Jensen device only in situations where it is really 
indispensable. 

52.3. Bound variables 

In view of these disadvantages it is probably worthwhile to investi­
gate the background of the Jensen-device a little closer in order to 
assign it its proper place within the framework of ALGOL: 

52.3.1. Considering a mathematical expression, e.g. an integral 

1 

I=Jf(x,y) dx, 
o 

it is seen that the variables x and y serve entirely different purposes: 
y is a variable upon which the value of I depends; in mathematical 
logic this is called a free variable (of the expression). This latter term 
indicates that one is free to substitute a value, e.g. 2.75, for y, where­
upon one obtains the result 

1 

Jf(x, 2.75) dx. 
o 

The variable x, on the other hand, is only an auxiliary object for de­
scribing the operation to be performed by the expression. It is called 
a bound variable since it is not accessible from outside the expression. 
Indeed, it would be stupid to substitute in the above integral the value 
2.75 for x. 

Likewise in the expression 

k is a bound variable while I, a, b are free. 
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52.3.2. Comparing these examples with an ALGOL procedure and the 
terminology used in Chapter VII, it becomes obvious that the free 
variables correspond to what are called the operands of a procedure, 
while the bound variables correspond to the internal quantities. 

With these notions in mind, a glance at the declarations of the 
procedures sum, innerp, feuler, if reveals at once the essence of the 
Jensen device: Bound variables of a procedure are quoted in the formal 
parameter part in order that actual parameters may be made dependent 
upon them. 

52.3.3. However, since the occurrence of bound variables in the formal 
or actual parameter part is an irregularity (but cannot be avoided in 
this context) it is recommended that such occurrences at least be clearly 
indicated, namely by introducing a fifth category in the structurized 
formal and actual parameter part, e.g. 

« real procedure sum (a, b, c) bound variables: (d) ; ... », 
« procedure innerp (n, x, y) res: (s) bound variables: (k) ; ... », 
« procedure ff (n, al, a2) res: (a3) bound variables: (i, f) ; ... », 

«sum (1, n, 1 fa [k]) bound variables: (k)), 
«innerp (n, a [i, f], b [f, k]) res: (c [i, k]) bound variables: (f) ». 

§ 53. Conclusion 

In view of its ad-hoc character it seems doubtful that the Jensen 
device (and to some extent even the full name-concept) is the last word 
in programming language design. Indeed, the dependence of the com­
ponents of an array upon its subscripts (and likewise the dependence of 
a function upon its arguments) is more appropriately described by means 
of CHURCH'S lambda notation l rather than through the bound variables 
of a computing process. Accordingly, we conclude with a sideview to 
a possibility for introducing this notation in a future ALGOL, but in 
doing so we strictly adhere to a SUBSET like language-concept, i.e. one 
in which quantities rather than names play the fundamental role. 

53.1. Church's lambda notation 1 

Let us consider again 
1 

I=Jf(x,y) dx, 
o 

1 CHURCH, A.: A Set of Postulates for the Foundations of Logic. Ann. of Math. 
II 33, 346-366 (1932). 

The colons following the lambda-variables have been added by the present 
author. 
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which represents a certain value depending on the value of y. In standard 
mathematical notation the same form of expression is used for describing 
the value of this integral for a given y as well as for the functional 
relationship (as an abstract entity) between y and I. In view of con­
fusions that may arise from this ambiguity, A. CHURCH proposed dif­
ferent notations for the two concepts: 

1 

a) by f f (x, y) dx he describes the value of the integral for a given 
o value of y, while 

1 

b) AY: ff(x,y)dx denotes the function I(y) itself, i.e. the functional 
relationship between the set of all admissible y's 
and the corresponding 1'sl. 

o 

In this manner AX: sin (x) denotes the sine-function itself while sin (x) 
represents the value of the sine-function for a specific value of x. 

Finally also AX: (aO+a1 x+a2 x2+ ... +anxn) is the correct expres­
sion of a polynomial, indicating that it is considered as a function of x, 
whereas if it should be considered as a linear form of its coefficients, it 
would have been written 

53.2. The lambda notation for arrays 

Now, since the components of an array are also functions of its sub­
scripts, one should correctly write Ai, k: a[i, k] for this function, i.e. 
for the array where it appears as a quantity. On the other hand 

a [i, k] 
Ai:a[i, jJ 
Ai, j:a[i+1, j+1] 
Ai:a[i,i] 

would denote one single component of this array, 
would mean the j-th column vector, 
the shifted array, 
the vector of all diagonal elements, etc. 

Obviously this notation - if it is used for the array components and 
not just for their values - provides the mechanism necessary for per­
forming operations upon subarrays, and it can easily be transcribed into 
ALGOL: 

As a first measure, a formal array must be represented in the formal 
parameter part of a procedure declaration not just by its identifier F 

1 This is an analogous distinction as in ALGOL, where on the one hand the 
declaration of a function procedure, e.g. 

«real procedure I (y) ; real y ; ... ~ 

defines the functional relationship between y and I, while the value of the function 
for a given value of y is described by a function designator, e.g. <<1 (y),). 
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but by the syntactic construction 

«lambda v;: , ~, ... , vp: F[V;:, ~, ... , vp] )}, (1 ) 

where (<lambda)} is a new basic symbol, F is the array identifier, p the 
dimension of the array F and the V's are identifiers denoting hypothetical 
simple variables of type integer. These latter are assumed to be bound 
to the construction (1); as a consequence they need not be declared, 
not even specified. 

A corresponding actual operand would then be described by 

(2) 

where now the S's are subscript expressions while the V's are again 
identifiers representing integer-type simple variables which are bound 
to (2). q is the dimension of the array A, of which (2) is a subarray. 
The S's may depend on the V's (but also on other variables) and in this 
way they define the subarrayl. 

For practical reasons a few exceptions must be allowed for: 

a) In most applications an actual array occurring in a procedure call 
is an array with precisely the same dimension and with the same meaning 
of the subscripts as for the corresponding formal array. It would be 
very annoying if even in such trivial cases the actual operand had to 
be quoted in full, i.e. by 

(<lambda v;: , ~, ... , vp: Aev;:,~, ... , vp])}. 

Indeed, in this case one could obviously just as well write «A)} without 
losing anything. 

b) In view of the standard I/O-procedures inarray, Qutarray, or pro­
cedures like vgs (given as an example in 45.4.4), it must be allowed 
that the dimension of a formal array is not specified by the procedure 
declaration. Therefore it must be tolerated that as in ALGOL 60 a formal 
array is quoted in the procedure heading just by its identifier F. How­
ever, if this is done, the corresponding actual parameter must also be 
an identifier, which makes it impossible to use a sub array as actual 
operand. 

53.3. Syntax of the proposed extension 

It is not actually necessary to introduce the full syntactic forms (1) 
and (2) above. Indeed, since in (1) neither the new symbol <<lambda)} 
nor the variables V;; in front of the colon convey any information, these 

1 The term subarray should not be taken too literally; indeed, as indicated in 
53.5, it can also mean a shifted array, or even an array of higher dimension than 
the array from which it is extracted (see also example 53.5.4). 
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can be omitted and the formal parameter defined as having one of the 
following syntactic forms: 

«F» (array identifier), 
«F[1, 2, ... , p] » (formal array designator) ,1 

where the underlined integers 1,2, ... (called lambda designators) are 
basic symbols of the language which (in this order) represent the bound 
variables Ii;. , V;, ... , Vp. 

Likewise an actual parameter can have - besides the cases already 
mentioned in 26.2 - the following syntactic form: 

«A [51' 52' ... , 5q] » (actual array designator), 

the 5's now being subscript expressions which may contain as primaries 
(among other variables valid in the environment of the call) the lambda 
designators 1, 2, ... , p, where p is the dimension of the corresponding 
formal array F. 

Actual array designators may also appear as actual parameters where 
the corresponding formal parameter is a simple variable, but then the 
subscripts of the actual array designator may not contain any lambda 
designators. 

53.4. Semantics of the proposed extension 

Whenever an actual operand is represented by an identifier, the same 
rules as in 45.2 apply, but if an actual array designator «A [51 ,52"", 5q ]» 
occurs as actual parameter, this has the following consequences: 

a) With the exception of lambda designators, all primaries occurring 
within the 5's are evaluated at the time when this actual parameter is 
encountered, and the values thus obtained are substituted in place of 
these primaries. 

b) The equivalence block corresponding to that call is constructed 
as 'Stated in 45.2, except that within the procedure body any occurrence 
of an element «F[ E1 , E 2 , ••• , Ep]» referring to the formal array F is 
replaced by «A [51 ,52 , ••• , 5q]», whereby every lambda designator k oc­
curring within that actual array designator is replaced by the expres­
sion Ek • Needless to say, name conflicts must be treated in analogy to 
the rules given in 45.2.3. 

Thus the present proposal bases essentially on the fact that all objects 
occurring within the actual parameter part in brackets are "taken per 
value", i.e. evaluated when the procedure call is encountered and then 
are kept constant throughout the execution of the procedure. As a con­
sequence, a procedure always operates on clearly defined quantities, a 

1 The grotesque type letter p is to be considered as representant of the number p 
written in grotesque type. 

t 7 Rutishauser, Description of ALGOL 60 
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fact which makes it possible to build compilers that produce more ef­
ficient object programs. 

The present concept could of course be extended from arrays to 
procedures, thus making it possible for a sub-procedure of a procedure 
to be used as actual operand. However, this is not so urgent since the 
global parameters give us this possibility already in the present ALGOL. 

53.5. Applications of the proposed extension 

The following examples serve to show some of the possibilities of 
this extension, which, though resembling somewhat the empty subscript 
positions of ALGOL 58, goes far beyond ALGOL 58 in scope and versatility. 

53.5.1. The declaration of procedure inner as given in 44.1.3 could now 
be rewritten as 

«procedure inner (n, x [1 J, Y [1J) res: (s) ; 
value n ; 
real s ; integer n ; array x, y ; 

begin I 
procedure body as in 44.1.1. 

end). 

With this modification 

<<inner(l, a[i, 1J, a[1, kJ) res: (t))) 

has the same effect as was achieved with the Jensen device by the call 
(3) in § 52. Furthermore, 

«for i : = 1 step 1 until n do inner (n, a [i, 1J, x) res: (y [iJ))) 

describes the multiplication of a matrix A = a [1 : n, 1 : n J with a vec­
tor x =x[1 :nJ, yielding the product vector y = y [1 :nJ. 

53.5.2. Assume that 

«procedure gauss(n, r) trans: (a[1, 2J, x[1, 2J) exit: (sing) ; 
value n, r ; 
integer n, r ; array a, x ; label sing; 
code) 

declares a procedure which solves simultaneously r linear systems with 
a common coefficient-matrix A = a [1 : n, 1 : n J, the r sets of constant 
terms being given at the beginning as the r columns of a matrix X = 
x [1 : n, 1 : rJ, and that after termination the r solutions are available as 
the r columns of the same matrix X. 

In ALGOL 60 the actual counterpart of x had to be declared as a 
two-dimensional array, also in the case r = 1, but with the present 
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proposal we can call gauss by 

«gauss(n, 1) trans: (a, b[1J) exit: (fail))}, 

where b is declared as «array b [1 :nJ )}. According to the extended sub­
stitution rule, any occurrence of « x [i, iJ)} within the procedure body of 
gauss is replaced by «b [iJ)} and thus - in view of r = 1 - the above 
call solves the one linear system as defined by the coefficient-matrix A 
and the constant terms b[1J, ... , ben]. 

53.5.3. Consider 

« procedure matinv (n) trans: (a [1, 2J) exit: (fail) ; 
value n ; 
integer n ; array a; label fail; 

begin ) 
procedure body as in 44.7.5. 

end)}. 

If one wants to invert the capsized matrix 

(which may be desirable for numerical reasons), this would normally 
require that its components be assigned to the components of another 
matrix which is then inverted. However, with the present scheme, this 
can be achieved directly by a call 

«matinv (n) trans: (a [n+1-1, n+1-2J) exit: (fail) )}, 

because in this case matinv operates on the component 
a[n+1-i,n+1-iJ instead of a[i,i]. 

53.5.4. Suppose that a procedure iacobi for computing eigenvalues of a 
symmetric matrix has been declared as 

« procedure iacobi (n) trans: (a [1, 2J) ; 
value n ; 
integer n ; array a ; 
code performs diagonalisation of matrix a [1 : n, 1 : n J )}. 

Since a procedure for the Jacobi method is usually designed such that 
it does not use or change the subdiagonal elements, it is only natural 
to think of rewriting the procedure in such a way that the storage space 
for the subdiagonal elements is actually saved. With the present proposal 
this saving can be achieved without rewriting the procedure, simply by 
calling it by 

«iacobi (n) trans: (d [(1-1) X (n-1/2) + 2J) )}, 

17* 
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where the array d is declared as «arrayd[i:nx(n+i)/2]». Indeed, 
k= (i-i) X (n-i/2) +i is the function which maps the triangle 1 ~i~j~n 

onto the linear interval 1 ~ k ~ (n ~ 1) . 
53.5.5. In order to exhibit the performance of the substitution rule in 
case of nested occurrences of the lambda notation, consider 

«procedure aa(x[1, 2]) ; array x ; 
begin 

integer i ; 

xCi, j] := ... ; 
bb (x [i, 1]) ; 

end aa», 

where bb is declared as 

«procedure bb(y[1]) ; array y ; 
begin 

integer i ; 

y[i]:= ... 
end bb». 

Now the equivalence block for a call «aa (z [2, /,1, -1])) is deter­
mined in two steps: First, for the call of aa: 

« begin 
integer i ; 

z[j, /, i, -iJ := ... ; 
bb(z[1, /, i, -iJ) ; 

end aa», 

and then for the call of bb within aa: 

«begin 
integer i ; 

zlj, /, i, -iJ:= ... ; 
begin 

integer ice ; 

z[ice, /, i, -iJ := ... ; 
end bb 

end aa». 
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Conversely, we could also use the semi static rule of 48.2.2 which 
produces first a new procedure 

«procedure aal(x[1, 2J) ; array x ; 
begin 

integer i ; 

xCi, jJ := ... ; 
begin 

integer ia: ; 

xCi, ia:]:= .. , ; 
end bb 

end aal)}, 

whereupon application of the substitution rule given in 53.4 yields the 
same equivalence block as above. 

We conclude with the remark, that there are of course other desirable 
extensions of the present ALGOL, but this one is important insofar as 
efficient handling of arrays and subscripted variables is a predominant 
requirement in computing practice. 
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Revised Report on the Algorithmic Language ALGOL 60 * 1 

By 

J. W. BACKUS, F. L. BAUER, J. GREEN, C. KATZ, J. MCCARTHY, 
P. NAUR, A. J. PERLIS, H. RUTISHAUSER, K. SAMELSON, B. V AUQUOIS, 

J. H. WEGSTEIN, A. VAN WIJNGAARDEN, M. WOODGER 

Edited by 

PETER NAUR 

Dedicated to the memory of WILLIAM TURANSKI 

Summary 

The report gives a complete defining description of the international 
algorithmic language ALGOL 60. This is a language suitable for expressing 
a large class of numerical processes in a form sufficiently concise for 
direct automatic translation into the language of programmed automatic 
computers. 

The introduction contains an account of the preparatory work leading 
up to the final conference, where the language was defined. In addition 
the notions reference language, publication language, and hardware 
representations are explained. 

In the first chapter a survey of the basic constituents and features of 
the language is given, and the formal notation, by which the syntactic 
structure is defined, is explained. 

The second chapter lists all the basic symbols, and the syntactic 
units known as identifiers, numbers, and strings are defined. Further 
some important notions such as quantity and value are defined. 

The third chapter explains the rules for forming expressions and the 
meaning of these expressions. Three different types of expressions exist: 
arithmetic, Boolean (logical), and designational. 

The fourth chapter describes the operational units of the language, 
known as statements. The basic statements are: assignment statements 
(evaluation of a formula), go to statements (explicit break of the sequence 

* International Federation for Information Processing 1962. 
1 Numerische Mathematik 4, 420-453 (1963). 
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of execution of statements), dummy statements, and procedure state­
ments (call for execution of a closed process, defined by a procedure 
declaration). The formation of more complex structures, having state­
ment character, is explained. These include: conditional statements, for 
statements, compound statements, and blocks. 

In the fifth chapter the units known as declarations, serving for 
defining permanent properties of the units entering into a process 
described in the language, are defined. 

The report ends with two detailed examples of the use of the language 
and an alphabetic index of definitions. 

Introduction 
Background 

After the publication1• 2 of a preliminary report on the algorithmic 
language ALGOL, as prepared at a conference in Zurich in 1958, much 
interest in the ALGOL language developed. 

As a result of an informal meeting held at Mainz in November 1958, 
about forty interested persons from several European countries held an 
ALGOL implementation conference in Copenhagen in February 1959. A 
"hardware group" was formed for working cooperatively right down to the 
level of the paper tape code. This conference also led to the publication 
by Regnecentralen, Copenhagen, of an Algol Bulletin, edited by PETER 
NAUR, which served as a forum for further discussion. During the June 
1959 ICIP Conference in Paris several meetings, both formal and in­
formal ones, were held. These meetings revealed some misunderstandings 
as to the intent of the group which was primarily responsible for the 
formulation of the language, but at the same time made it clear that 
there exists a wide appreciation of the effort involved. As a result of 
the discussions it was decided to hold an international meeting in 
January 1960 for improving the ALGOL language and preparing a final 
report. At a European ALGOL Conference in Paris in November 1959 
which was attended by about fifty people, seven European representatives 
were selected to attend the January 1960 Conference, and they represent 
the following organizations: Association Franc;aise de Caleul, British 
Computer Society, Gesellschaft fur Angewandte Mathematik und 
Mechanik, and Nederlands Rekenmachine Genootschap. The seven re­
presentatives held a final preparatory meeting at Mainz in December 

1959· 
1 Preliminary report - International Algebraic Language. Comm. Assoc. Compo 

Mach. 1. No. 12 (1958).8. 
2 Report on the Algorithmic Language ALGOL by the ACM Committee on Pro­

gramming Languages and the GAMM Committee on Programming. edited by A. J. 
PERLIS and K. SAMELSON. Numerische Mathematik Ed. 1. S. 41-60 (1959). 
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Meanwhile, in the United States, anyone who wished to suggest 
changes or corrections to ALGOL was requested to send his comments 
to the Communications of the ACM, where they were published. These 
comments then became the basis of consideration for changes in the 
ALGOL language. Both the SHARE and USE organizations established 
ALGOL working groups, and both organizations were represented on the 
ACM Committee on Programming Languages. The ACM Committee 
met in Washington in November 1959 and considered all comments on 
ALGOL that had been sent to the ACM Communications. Also, seven 
representatives were selected to attend the January 1960 international 
conference. These seven representatives held a final preparatory meeting 
in Boston in December 1959. 

January 1960 Conference 

The thirteen representatives 1, from Denmark, England, France, 
Germany, Holland, Switzerland, and the United States, conferred in 
Paris from January 11 to 16, 1960. 

Prior to this meeting a completely new draft report was worked out 
from the preliminary report and the recommendations of the pre­
paratory meetings by PETER NAUR and the Conference adopted this new 
form as the basis for its report. The Conference then proceeded to work 
for agreement on each item of the report. The present report represents 
the union of the Committee's concepts and the intersection of its agree­
ments. 

Apri11962 Conference [Edited by M. Woodger] 

A meeting of some of the authors of ALGOL 60 was held on 2nd-3rd 
April 1962 in Rome, Italy, through the facilities and courtesy of the 
International Computation Centre. The following were present: 

Authors 

F. L. BAUER 
J. GREEN 
C. KATZ 
R. KOGON (representing 

J. W. BACKUS) 
P.NAUR 
K. SAMELSON 
J. H. WEGSTEIN 
A. VAN WIJNGAARDEN 
M. WOODGER 

Advisers 

M. PAUL 
R. FRAN CIOTTI 
P. Z. INGERMAN 

G. SEEGMULLER 
R. E. UTMAN 

P. LANDIN 

Observer 

W. L. VAN DER POEL 
(Chairman, IFIP TC 2.1 
Working Group ALGOL) 

1 WILLIAM TURANSKI of the American group was killed by an automobile just 
prior to the January 1960 Conference. 
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The purpose of the meeting was to correct known errors in, attempt to 
eliminate apparent ambiguities in, and otherwise clarify the ALGOL 60 
Report. Extensions to the language were not considered at the meeting. 
Various proposals for correction and clarification that were submitted by 
interested parties in response to the Questionnaire in Algol Bulletin No.14 
were used as a guide. 

This report! constitutes a supplement to the ALGOL 60 Report which 
should resolve a number of difficulties therein. Not all of the questions 
raised concerning the original report could be resolved. Rather than risk 
hastily drawn conclusions on a number of subtle points, which might 
create new ambiguities, the committee decided to report only those 
points which they unanimously felt could be stated in clear and un­
ambiguous fashion. 

Questions concerned with the following areas are left for further con­
sideration by Working Group 2.1 of IFIP, in the expectation that current 
work on advanced programming languages will lead to better resolution: 

1. Side effects of functions. 
2. The call by name concept. 
3. own: static or dynamic. 
4. For statement: static or dynamic. 
5. Conflict between specification and declaration. 

The authors of the ALGOL 60 Report present at the Rome Conference, 
being aware of the formation of a Working Group on ALGOL by IFIP, 
accepted that any collective responsibility which they might have with 
respect to the development, specification, and refinement of the ALGOL 
language will from now on be transferred to that body. 

This report has been reviewed by IFIP TC 2 on Programming 
Languages in August 1962 and has been approved by the Council of the 
International Federation for Information Processing. 

As with the preliminary ALGOL report, three different levels of 
language are recognized, namely a Reference Language, a Publication 
Language, and several Hardware Representations. 

1 [Editor's note: - The present edition follows the text which was approved 
by the Council of IFIP. Although it is not clear from the Introduction, the present 
version is the original report of the January 1960 conference modified according to 
the agreements reached during the April 1962 conference. Thus the report mentioned 
here is incorporated in the present version. The modifications touch the original 
report in the following sections: Changes of text: 1 with footnote; 2.1 footnote; 
2.3; 2.7; 3·3·3; 3·3.4.2; 4.1·3; 4.2.3; 4.2.4; 4.3.4; 4·7·3; 4.7-3.1; 4.7·3.3; 4.7·5·1; 
4.7.5.4; 4.7.6; 5; 5.3.3; 5.3.5; 5.4.3; 5.4.4; 5.4·5· Changes of syntax: 3.4.1; 4.1.1; 
4.2.1; 4.5.1.] 
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Reference Language 

1. It is the working language of the committee. 

2. It is the defining language. 

3. The characters are determined by ease of mutual understanding 
and not by any computer limitations, coders notation, or pure mathe­
matical notation. 

4. It is the basic reference and guide for compiler builders. 

5. It is the guide for all hardware representations. 

6. It is the guide for transliterating from publication language to 
any locally appropriate hardware representations. 

7. The main publications of the ALGOL language itself will use the 
reference representation. 

Publication Language 

1. The publication language admits variations of the reference 
language according to usage of printing and handwriting (e.g., subscripts, 
spaces, exponents, Greek letters). 

2. It is used for stating and communicating processes. 

3. The characters to be used may be different in different countries, 
but univocal correspondence with reference representation must be 
secured. 

Hardware Representations 

1. Each one of these is a condensation of the reference language 
enforced by the limited number of characters on standard input equip­
ment. 

2. Each one of these uses the character set of a particular computer 
and is the language accepted by a translator for that computer. 

3. Each one of these must be accompanied by a special set of rules 
for transliterating from publication or reference language. 

For transliteration between the reference language and a language 
suitable for publications, among others, the following rules are re­
commended. 

Reference language 

Subscript brackets [J 

Exponentiation t 
Parentheses 0 
Basis of ten 10 

Publication language 

Lowering of the line between the brackets and 
removal of the brackets. 
Raising of the exponent. 
Any form of parentheses, brackets, braces. 
Raising of the ten and of the following integral 
number, inserting of the intended multiplica­
tion sign. 
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Description of the reference language 
Was sich iiberhaupt sagen HU3t, HiBtsich 
klar sagen; und wovon man nicht reden 
kann, dariiber muB man schweigen. 

LUDWIG WITTGENSTEIN 

1. Structure of the language 

As stated in the introduction, the algorithmic language has three 
different kinds of representations - reference, hardware, and publica­
tion - and the development described in the sequel is in terms of the 
reference representation. This means that all objects defined within the 
language are represented by a given set of symbols - and it is only in 
the choice of symbols that the other two representations may differ. 
Structure and content must be the same for all representations. 

The purpose of the algorithmic language is to describe computational 
processes. The basic concept used for the description of calculating rules 
is the well known arithmetic expression containing as constituents num­
bers, variables, and functions. From such expressions are compounded, 
by applying rules of arithmetic composition, self-contained units of the 
language - explicit formulae - called assignment statements. 

To show the flow of computational processes, certain non-arithmetic 
statements and statement clauses are added which may describe e.g., 
alternatives, or iterative repetitions of computing statements. Since it is 
necessary for the function of these statements that one statement refers 
to another, statements may be provided with labels. A sequence of 
statements may be enclosed between the statement brackets begin and 
end to form a compound statement. 

Statements are supported by declarations which are not themselves 
computing instructions, but inform the translator of the existence and 
certain properties of objects appearing in statements, such as the class of 
numbers taken on as values by a variable, the dimension of an array of 
numbers, or even the set of rules defining a function. A sequence of 
declarations followed by a sequence of statements and enclosed between 
begin and end constitutes a block. Every declaration appears in a 
block in this way and is valid only for that block. 

A program is a block or compound statement which is not contained 
within another statement and which makes no use of other statements 
not contained within it. 

In the sequel the syntax and semantics of the language will be given1. 

1 Whenever the precision of arithmetic is stated as being in general not specified, 
or the outcome of a certain process is left undefined or said to be undefined, this 
is to be interpreted in the sense that a program only fully defines a computational 
process if the accompanying information specifies the precision assumed, the kind 
of arithmetic assumed, and the course of action to be taken in all such cases as may 
occur during the execution of the computation. 
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1.1. Formalism for syntactic description. 

The syntax will be described with the aid of metalinguistic formulae I. 
Their interpretation is best explained by an example: 

<ab) ::= (I [I <ab) (I <ab) <d) 

Sequences of characters enclosed in the bracket <> represent metalin­
guistic variables whose values are sequences of symbols. The marks 
::= and I (the latter with the meaning of or) are metalinguistic con­
nectives. Any mark in a formula, which is not a variable or a connective, 
denotes itself (or the class of marks which are similar to it). Juxta 
position of marks and/or variables in a formula signifies juxtaposition 
of the sequences denoted. Thus the formula above gives a recursive rule 
for the formation of values of the variable <ab). It indicates that <ab) 
may have the value ( or [or that given some legitimate value of <ab), 
another may be formed by following it with the character ( or by follow­
ing it with some value of the variable <d). If the values of <d) are the 
decimal digits, some values of <a b) are: 

[(((1(37( 
(12345( 
(( ( 
[86 

In order to facilitate the study, the symbols used for distinguishing the 
metalinguistic variables (i.e. the sequences of characters appearing 
within the brackets <> as ab in the above example) have been chosen to 
be words describing approximately the nature of the corresponding 
variable. Where words which have appeared in this manner are used 
elsewhere in the text they will refer to the corresponding syntactic 
definition. In addition some formulae have been given in more than one 
place. 

Definition: 

<empty) ::= 
(i.e. the null string of symbols). 

2. Basic symbols, identifiers, numbers, and strings. 

Basic concepts 

The reference language is built up from the following basic symbols: 

<basic symbol) ::= <letter) I <digit) I <logical value) I <delimiter) 

1 Cf. J. W. BACKUS, The syntax and semantics of the proposed international 
algebraic language of the Zurich ACM-GAMM conference. ICIP Paris, June 1959. 
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2.1. Letters 

<letter)::= alblcidielflglhliljlkillminiolplqlrlsitlulvlwixlylzi 
AI BICIDIEIFIGIHIIIJIKILIMINIOI PIQIRISI TI VI VI WIXI YIZ 

This alphabet may arbitrarily be restricted, or extended with any other 
distinctive character (i.e. character not coinciding with any digit, logical 
value or delimiter). 

Letters do not have individual meaning. They are used for forming 
identifiers and strings! (d. sections 2.4. Identifiers, 2.6. Strings). 

2.2.1. Digits 

<digit)::= 0111213141516171819 
Digits are used for forming numbers, identifiers, and strings. 

2.2.2. Logical values 

<logical value) : : = true I false 

The logical values have a fixed obvious meaning. 

2.3. Delimiters 

< delimiter) :: = < operator) I < separator) I <bracket) I < declarator) I 
< specificator) 

< operator) : : = <arithmetic operator) I <relational operator) I 
<logical operator) I <sequential operator) 

<arithmetic operator) ::= + I -I X 1/1-:-1 t 
<relational operator)::= < I ~ I = I ~ I > I =1= 
<logical operator) ::= == I :::) I V I" I ...., 
<sequential operator)::= goto I if I then I else I for I do 2 

<separator)::= , I ·110 I: I ; I := I u I step I until I while I comment 
<bracket)::= (i) I [I ] I '1'1 begin I end 
<declarator) ::= own I Boolean I integer I real I array I switch I 

procedure 
<specificator)::= string I label I value 

Delimiters have a fixed meaning which for the most part is obvious 
or else will be given at the appropriate place in the sequel. 

1 It should be particularly noted that throughout the reference language under­
lining [in typewritten copy; boldface type in printed copy - Ed.] is used for 
defining independent basic symbols (see sections 2.2.2 and 2.3). These are under­
stood to have no relation to the individual letters of which they are composed. 
Within the present report [not including headings - Ed.] underlining [boldface -
Ed.] will be used for no other purposes. 

2 do is used in for statements. It has no relation whatsoever to the do of the 
preliminary report, which is not included in ALGOL 60. 



270 Appendix B. The IFIP-Reports on ALGOL 

Typographical features such as blank space or change to a new 
line have no significance in the reference language. They may, however, 
be used freely for facilitating reading. 

For the purpose of including text among the symbols of a program 
the following "comment" conventions hold: 

The sequence of basic symbols: 

; comment <any sequence not containing ;); 
begin comment <any sequence not containing ;); 
end <any sequence not containing end or ; or else) 

is equivalent to 

begin 
end 

By equivalence is here meant that any of the three structures shown in 
the left hand column may be replaced, in any occurrence outside of 
strings, by the symbol shown on the same line in the right hand column 
without any effect on the action of the program. It is further understood 
that the comment structure encountered first in the text when reading 
from left to right has precedence in being replaced over later structures 
contained in the sequence. 

2.4. Identifiers 

2.4.1. Syntax. 

<identifier) ::= <letter) I <identifier) <letter) I <identifier) <digit) 

2.4.2. Examples q 
Soup 
Vi7a 
a34kTMNs 
MARILYN 

2.4.3. Semantics. Identifiers have no inherent meaning, but serve for the 
identification of simple variables, arrays, labels, switches, and procedures. 
They may be chosen freely (d. however section 3.2.4. Standard functions). 

The same identifier cannot be used to denote two different quantities 
except when these quantities have disjoint scopes as defined by the 
declarations of the program (d. section 2.7. Quantities, kinds and scopes 
and section 5. Declarations). 

2.5. Numbers 

2.5.1. Syntax. 
<unsigned integer) ::= <digit) I <unsigned integer) <digit) 
<integer)::= <unsigned integer) I + <unsigned integer) I 

- <unsigned integer) 
< decimal fraction) : : = . <unsigned integer) 
<exponent part): :=10 <integer) 
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<decimal number)::= <unsigned integer) I <decimal fraction) I 
<unsigned integer) <decimal fraction) 

<unsigned number) ::= <decimal number) I <exponent part) I 
<decimal number) <exponent part) 

<number) ::= <unsigned number) I + <unsigned number) I 
- <unsigned number) 

2.5.2. Examples o 
177 

.5384 
+0.7300 

-200.084 
+ 07.43108 

9.3410+10 
210-4 

-.08310-02 
-107 

10-4 

+10+5 

2.5.3. Semantics. Decimal numbers have their conventional meaning. 
The exponent part is a scale factor expressed as an integral power of 10. 

2.5.4. Types. Integers are of type integer. All other numbers are of type 
real (d. section 5.1 Type declarations). 

2.6. Strings 

2.6.1. Syntax. 

<proper string) : : = <any sequence of basic symbols not containing' or ') I 
<empty) 

< open string) : : = <proper string) I '<open string)' I 
< open string) <open string) 

< string) : : = '<open string)' 

2.6.2. Examples. '5k" - '[[['J\=/:'Tt" 
' .. This u is u au' string" 

2.6-3. Semantics. In order to enable the language to handle arbitrary 
sequences of basic symbols the string quotes' and' are introduced. The 
symbol u denotes a space. It has no significance outside strings. 

Strings are used as actual parameters of procedures (d. sections 3.2. 
Function designators and 4.7. Procedure statements). 

2.7. Quantities, kinds and scopes 

The following kinds of quantities are distinguished: simple variables, 
arrays, labels, switches, and procedures. 

The scope of a quantity is the set of statements and expressions in 
which the declaration of the identifier associated with that quantity is 
valid. For labels see section 4.1.3. 

2.8. Values and types 

A value is an ordered set of numbers (special case: a single number), 
an ordered set of logical values (special case: a single logical value), or a 
label. 
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Certain of the syntactic units are said to possess values. These values 
will in general change during the execution of the program. The values 
of expressions and their constituents are defined in section 3. The value 
of an array identifier is the ordered set of values of the corresponding 
array of subscripted variables (d. section 3.1.4.1). 

The various "types" (integer, real, Boolean) basically denote 
properties of values. The types associated with syntactic units refer to 
the values of these units. 

3. Expressions 

In the language the primary constituents of the programs describing 
algorithmic processes are arithmetic, Boolean, and designational ex­
pressions. Constituents of these expressions, except for certain delimiters, 
are logical values, numbers, variables, function designators, and ele­
mentary arithmetic, relational, logical, and sequential operators. Since 
the syntactic definition of both variables and function designators 
contains expressions, the definition of expressions, and their constituents, 
is necessarily recursive. 

<expression) ::= <arithmetic expression) I <Boolean expression) I 
< design a tional expression) 

3 .1. Variables 

3.1.1. Syntax. 
<variable identifier) ::= <identifier) 
<simple variable) ::= <variable identifier) 
<subscript expression) ::= <arithmetic expression) 
<subscript list) ::= <subscript expression) I <subscript list), 

<subscript expression) 
<array identifier) ::= <identifier) 
<subscripted variable) ::= <array identifier) [<subscript list) J 
<variable) ::= <simple variable) I <subscripted variable) 

3.1.2. Examples epsilon 
detA 
al7 
Q[7,2J 
x [sin(n x pij2) , Q[3, n, 4]] 

3.1.3. Semantics. A variable is a designation given to a single value. This 
value may be used in expressions for forming other values and may be 
changed at will by means of assignment statements (section 4.2). The 
type of the value of a particular variable is defined in the declaration for 
the variable itself (d. section 5.1. Type declarations) or for the corre­
sponding array identifier (d. section 5.2. Array declarations). 
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3.1.4. Subscripts. 3.1.4.1. Subscripted variables designate values which 
are components of multidimensional arrays (d. section 5.2. Array de­
clarations). Each arithmetic expression of the subscript list occupies one 
subscript position of the SUbscripted variable and is called a subscript. 
The complete list of subscripts is enclosed in the subscript brackets [J. 
The array component referred to by a subscripted variable is specified 
by the actual numerical value of its subscripts (d. section 3.3. Arith­
metic expressions). 

3.1.4.2. Each subscript position acts like a variable of type integer and 
the evaluation of the subscript is understood to be equivalent to an 
assignment to this fictitious variable (d. section 4.2.4). The value of the 
subscripted variable is defined only if the value of the subscript expression 
is within the subscript bounds of the array (d. section 5.2. Array de­
clarations). 

3.2. Function designators 

3.2.1. Syntax. 

<procedure identifier) ::= <identifier) 
<actual parameter)::= <string) I <expression) I <array identifier) I 

<switch identifier) I <procedure identifier) 
<letter string) : : = <letter) I <letter string) <letter) 
<parameter delimiter) : : = , I ) <letter string) : ( 
< actual parameter list) : : = <actual parameter) I 

<actual parameter list) <parameter delimiter) <actual parameter) 
<actual parameter part) ::= <empty) I «actual parameter list») 
<function designator) ::= <procedure identifier) 

< actual parameter part) 

3.2.2. Examples. sin(a-b) 
](v+s, n) 
R 
S (s-5) Temperature: (T) Pressure: (P) 
Compile (':=') Stack: (Q) 

3.2.3. Semantics. Function designators define single numerical or logical 
values which result through the application of given sets of rules defined 
by a procedure declaration (d. section 5.4. Procedure declarations) to 
fixed sets of actual parameters. The rules governing specification of 
actual parameters are given in section 4.7. Procedure statements. Not 
every procedure declaration defines the value of a function designator. 

3.2.4. Standard functions. Certain identifiers should be reserved for the 
standard functions of analysis, which will be expressed as procedures. 
It is recommended that this reserved list should contain: 

18 Rutishauser, Description of ALGOL 60 
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abs (E) 

sign (E) 

sqrt (E) 

sin (E) 
cos (E) 
arctan (E) 
In (E) 
exp (E) 
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for the modulus (absolute value) of the value of the expres­
sion E 
for the sign of the value of E(+l for E>O, 0 for E=O, -1 
for E<O) 
for the square root of the value of E 
for the sine of the value of E 
for the cosine of the value of E 
for the principal value of the arctangent of the value of E 
for the natural logarithm of the value of E 
for the exponential function of the value of E (eE) 

These functions are all understood to operate indifferently on arguments 
both of type real and integer. They will all yield values of type real, 
except for sign (E) which will have values of type integer. In a particular 
representation these functions may be available without explicit de­
clarations (d. section 5. Declarations). 

3.2.5. Transfer functions. It is understood that transfer functions be­
tween any pair of quantities and expressions may be defined. Among 
the standard functions it is recommended that there be one, namely 

entier (E), 

which "transfers" an expression of real type to one of integer type, and 
assigns to it the value which is the largest integer not greater than the 
value of E. 

3.3. Arithmetic expressions 

3.3.1. Syntax. 
<adding operator)::= + I -
<multiplying operator)::= X III -:-
<primary) ::= <unsigned number) I <variable) I <function designator) I 

( < arithmetic expression») 
< factor) : : = <primary) I <factor) t <primary) 
<term) ::= <factor) I (term) <multiplying operator) <factor) 
<simple arithmetic expression) ::= <term) I (adding operator) 

(term) I (simple arithmetic expression) <adding operator) (term) 
<if clause) : : = if <Boolean expression) then 
(arithmetic expression)::= <simple arithmetic expression) I 

(if clause) <simple arithmetic expression) else 
( arithmetic expression) 

3.3.2. Examples. 
Primaries: 

7.39410-8 
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sum 
w[i+2,8J 
cos(y+zx3) 
(a-3(y+vu t 8) 

Factors: 
omega 
sum t cos (y+z x3) 
7.39410-8 t w[i+2, 8J t (a-3jy+vu t 8) 

Terms: 
U 
omegaxsum t cos(y+zx3)(7.39410-8 t w[i+2, 8J t (a-3(y+vu t 8) 

Simple arithmetic expression: 

U- Yu+omegaxsum t cos (y+zx3)(7.39410-8 t w[i+2, 8J t 
(a-3jy+vu t 8) 

Arithmetic expressions: 

wxu-Q(S+Cu) t 2 
if q>O then S+3xQjA else 2xS+3xq 
if a<O then U+ V else ifaxb>17 then UjV else if k=j=y then 

VjU else 0 
a X sin (omega X t) 
0.571012xa[Nx(N-l)j2, OJ 
(A X arctan (y) +z) t (7+Q) 
if q then n-l else n 
if a<O then AjB else if b=O then BjA else z 

3.3.3. Semantics. An arithmetic expression is a rule for computing a 
numerical value. In case of simple arithmetic expressions this value is 
obtained by executing the indicated arithmetic operations on the actual 
numerical values of the primaries of the expression, as explained in 
detail in section 3.3.4 below. The actual numerical value of a primary 
is obvious in the case of numbers. For variables it is the current value (as­
signed last in the dynamic sense), and for function designators it is the 
value arising from the computing rules defining the procedure (d. 
section 5.4.4. Values of function designators) when applied to the current 
values of the procedure parameters given in the expression. Finally, for 
arithmetic expressions enclosed in parentheses the value must through a 
recursive analysis be expressed in terms of the values of primaries of the 
other three kinds. 

In the more general arithmetic expressions, which include if clauses, 
one out of several simple arithmetic expressions is selected on the basis of 
the actual values of the Boolean expressions (d. section 3.4. Boolean 

IS* 
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expressions). This selection is made as follows: The Boolean expressions 
of the if clauses are evaluated one by one in sequence from left to right 
until one having the value true is found. The value of the arithmetic 
expression is then the value of the first arithmetic expression following 
this Boolean (the largest arithmetic expression found in this position is 
understood). The construction: 

else <simple arithmetic expression) 

is equivalent to the construction: 

else if true then <simple arithmetic expression) 

3.3.4. Operators and types. Apart from the Boolean expressions of if 
clauses, the constituents of simple arithmetic expressions must be of 
types real or integer (d. section 5.1. Type declarations). The meaning 
of the basic operators and the types of the expressions to which they lead 
are given by the following rules: 

3.3.4.1. The operators +, -, and X have the conventional meaning 
(addition, subtraction, and multiplication). The type of the expression 
will be integer if both of the operands are of integer type, otherwise 
real. 

3.3.4.2. The operations <term)/<factor) and <term) -;.- <factor) both 
denote division, to be understood as a multiplication of the term by the 
reciprocal of the factor with due regard to the rules of precedence (d. 
section 3.3.5). Thus for example 

alb X 7J(P-q) xvls 
means 

((((a X (b-1)) X 7) X ((P_q)-l)) xv) X (S-l) 

The operator I is defined for all four combinations of types real and 
integer and will yield results of real type in any case. The operator -;.­
is defined only for two operands both of type integer and will yield a 
result of type integer, mathematically defined as follows: 

a-;.-b= sign (a/b) X entier (abs (alb)) 

(d. sections 3.2.4 and 3.2.5). 

3.3.4.3. The operation <factor) t <primary) denotes exponentiation, 
where the factor is the base and the primary is the exponent. Thus for 
example 

2tntk 
while 

2 t (n t m) means 2(nm) 



Revised Report on the Algorithmic Language ALGOL 60 277 

Writing i for a number of integer type, r for a number of real type, 
and a for a number of either integer or real type, the result is given by 
the following rules: 

Ifi>O: 

If i = 0, 

aXaX'" Xa (i times), of the same type as a. 

if a =1= 0: 1, of the same type as a. 
if a= 0: undefined. 

Ifi<O, ifa=l=O: lj(axax···xa) (the denominator has 
-i factors), of type real. 

if a = 0 : undefined. 

at r If a>O: exp(rxln(a)), of type real. 

If a = 0, if r> 0: 0.0, of type real. 
if r ~ 0: undefined. 

If a < 0: always undefined. 

3.3.5. Precedence of operators. The sequence of operations within one 
expression is generally from left to right, with the following additional 
rules: 

3.3-5.1. According to the syntax given in section 3.3.1 the following rules 
of precedence hold: 

first: t 
second: xj--':--

third: +-
3.3.5.2. The expression between a left parenthesis and the matching right 
parenthesis is evaluated by itself and this value is used in subsequent 
calculations. Consequently the desired order of execution of operations 
within an expression can always be arranged by appropriate positioning 
of parentheses. 

3.3.6. Arithmetics of real quantities. Numbers and variables of type 
real must be interpreted in the sense of numerical analysis, i.e. as 
entities defined inherently with only a finite accuracy. Similarly, the 
possibility of the occurrence of a finite deviation from the mathematically 
defined result in any arithmetic expression is explicitly understood. No 
exact arithmetic will be specified, however, and it is indeed understood 
that different hardware representations may evaluate arithmetic ex­
pressions differently. The control of the possible consequences of such 
differences must be carried out by the methods of numerical analysis. 
This control must be considered a part of the process to be described, and 
will therefore be expressed in terms of the language itself. 
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3.4. Boolean expressions 
3.4.1. Syntax. 
<relational operator)::= < I ~ I = I ~ I > I =F 
<relation)::= <simple arithmetic expression) <relational operator) 

<simple arithmetic expression) 
<Boolean primary) ::= <logical value) I <variable) I 

<function designator) I <relation) I «Boolean expression») 
<Boolean secondary) ::= <Boolean primary) I --, <Boolean primary) 
<Boolean factor)::= <Boolean secondary) I 

<Boolean factor) A <Boolean secondary) 
<Boolean term) : : = <Boolean factor) I <Boolean term) V 

<Boolean factor) 
<implication) ::= <Boolean term) I <implication) ::) <Boolean term) 
<simple Boolean) ::= <implication) I <simple Boolean) == <implication) 
<Boolean expression) ::= <simple Boolean) I 

<if clause) <simple Boolean) else <Boolean expression) 

3.4.2. Examples. x=-2 
y> V V z<q 
a+b>-5 A z-d>q t 2 
pAqVx=FY 
g = --, a A b A --, c V d V e ::) --, t 
if k<l then s>w else h~c 
if if if a then b else c then d else t then g else h < k 

3.4.3. Semantics. A Boolean expression is a rule for computing a logical 
value. The principles of evaluation are entirely analogous to those given 
for arithmetic expressions in section 3 -3.3. 
3.4.4. Types. Variables and function designators entered as Boolean 
primaries must be declared Boolean (d. section 5.1. Type declarations 
and section 5.4.4. Values of function designators). 

3.4.5. The operators. Relations take on the value true whenever the 
corresponding relation is satisfied for the expressions involved, other­
wise false. 

The meaning of the logical operators --, (not), A (and), V (or), ::) 
(implies), and == (equivalent), is given by the following function table. 

bl I false I false I true I true 
b2 false true false true 

--, bl true true false false 
bl A b2 false false false true 
bl V b2 false true true true 
bl::::J b2 true true false true 
bl== b2 true false false true 
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3.4.6. Precedence of operators. The sequence of operations within one 
expression is generally from left to right, with the following additional 
rules: 

3.4.6.1. According to the syntax given in section 3.4.1 the following 
rules of precedence hold: 

first: 
second: 
third: 
fourth: 
fifth: 
sixth: 

arithmetic expressions according to section 3.3.5. 
<~=2;>=I= 

A 
V 
:::) 

seventh: -

3.4.6.2. The use of parentheses will be interpreted in the sense given in 
section 3.3.5.2. 

3.5. Designational expressions 

3.5.1. Syntax. 
<label)::= <identifier) [ <unsigned integer) 
<switch identifier) ::= <identifier) 
<switch designator) ::= <switch identifier) [<subscript expression) J 
<simple designational expression) ::= <label) [ <switch designator) [ 

( < designational expression») 
<designational expression) ::= <simple designational expression) [ 

<if clause) <simple designational expression) else 
< designa tional expression) 

3.5.2. Examples. 17 
p9 
Choose [n-1J 
Town [if y < 0 then N else N + 1J 
if Ab < c then 17 else q[if w~ 0 then 2 else nJ 

3.5.3. Semantics. A designational expression is a rule for obtaining a 
label of a statement (d. section 4. Statements). Again the principle of 
the evaluation is entirely analogous to that of arithmetic expressions 
(section 3.3.3). In the general case the Boolean expressions of the if 
clauses will select a simple designational expression. If this is a label the 
desired result is already found. A switch designator refers to the cor­
responding switch declaration (d. section 5.3. Switch declarations) and 
by the actual numerical value of its subscript expression selects one of 
the designational expressions listed in the switch declaration by counting 
these from left to right. Since the designational expression thus selected 
may again be a switch designator this evaluation is obviously a re­
cursive process. 
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3.5.4. The subscript expression. The evaluation of the subscript ex­
pression is analogous to that of subscripted variables (d. section 3.1.4.2). 
The value of a switch designator is defined only if the subscript ex­
pression assumes one of the positive values 1, 2, 3, ... , n, where n is the 
number of entries in the switch list. 

3.5.5. Unsigned integers as labels. Unsigned integers used as labels have 
the property that leading zeroes do not affect their meaning, e.g. 00217 
denotes the same label as 217. 

4. Statements 

The units of operation within the language are called statements. 
They will normally be executed consecutively as written. However, this 
sequence of operations may be broken by go to statements, which define 
their successor explicitly, and shortened by conditional statements, which 
may cause certain statements to be skipped. 

In order to make it possible to define a specific dynamic succession, 
statements may be provided with labels. 

Since sequences of statements may be grouped together into com­
pound statements and blocks the definition of statement must neces­
sarily be recursive. Also since declarations, described in section 5, enter 
fundamentally into the syntactic structure, the syntactic definition of 
statements must suppose declarations to be already defined. 

4.1. Compound statements and blocks 

4.1.1. Syntax. 

<unlabelled basic statement) ::= <assignment statement) I 
<go to statement) I <dummy statement) I <procedure statement) 

<basic statement) ::= <unlabelled basic statement) I 
<label): <basic statement) 

<unconditional statement)::= <basic statement) I 
<compound statement) I <block) 

<statement)::= <unconditional statement) I <conditional statement) I 
<for statement) 

<compound tail)::= <statement) end I <statement); <compound tail) 
<block head) ::= begin <declaration) I <block head); <declaration) 
<unlabelled compound)::= begin <compound tail) 
<unlabelled block) ::= <block head); <compound tail) 
<compound statement)::= <unlabelled compound) I 

<label): <compound statement) 
<block) ::= <unlabelled block) I <label): <block) 
<program) ::= <block) I <compound statement) 
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This syntax may be illustrated as follows: Denoting arbitrary statements, 
declarations, and labels, by the letters S, D, and L, respectively, the 
basic syntactic units take the forms: 

Compound statement: 
L: L: ... begin S; S; ... S; Send 

Block: 
L: L: ... begin D; D; .. D; S; S; ... S; Send 

It should be kept in mind that each of the statements S may again be a 
complete compound statement or block. 

4.1.2. Examples. 

Basic statements: 
a:= p+q 
goto Naples 
Start: Continue: W:= 7.993 

Compound statement: 

begin x: = 0; for y: = 1 step 1 until n do x: = x+A [y]; 

Block: 

if x>q then goto STOP else if x>w-2 then goto S; 
Aw: St: W:= x+bob end 

Q: begin integer i, k; real w; 
for i:= 1 step 1 until m do 

for k:= i+l step 1 until m do 
begin w := A [i, kJ; 

A[i, k]:= A[k, i]; 
A[k, iJ:= wend for i and k 

end block Q 

4.1.3. Semantics. Every block automatically introduces a new level of 
nomenclature. This is realized as follows: Any identifier occurring within 
the block may through a suitable declaration (d. section 5. Declarations) 
be specified to be local to the block in question. This means (a) that the 
entity represented by this identifier inside the block has no existence 
outside it and (b) that any entity represented by this identifier outside 
the block is completely inaccessible inside the block. 

Identifiers (except those representing labels) occurring within a block 
and not being declared to this block will be non-local to it, i.e. will 
represent the same entity inside the block and in the level immediately 
outside it. A label separated by a colon from a statement, i.e. labelling 
that statement, behaves as though declared in the head of the smallest 
embracing block, i.e. the smallest block whose brackets begin and end 
enclose that statement. In this context a procedure body must be 
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considered as if it were enclosed by begin and end and treated as a 
block. 

Since a statement of a block may again itself be a block the concepts 
local and non-local to a block must be understood recursively. Thus an 
identifier, which is non-local to a block A, mayor may not be non-local 
to the block B in which A is one statement. 

4.2. Assignment statements 
4.2.1. Syntax. 
<left part) ::= <variable):= I <procedure identifier):= 
<left part list) : : = <left part) I <left part list) <left part) 
<assignment statement)::= <left part list) <arithmetic expression) I 

<left part list) <Boolean expression) 

4.2.2. Examples. s:= P[O]:= n:= n+l+s 
n:= n+l 
A:= B/C-v-qxS 
S[v, k+2]:= 3-arctan(s X zeta) 
V:=Q>YAZ 

4.2.3, Semantics. Assignment statements serve for assigning the value 
of an expression to one or several variables or procedure identifiers. 
Assignment to a procedure identifier may only occur within the body 
of a procedure defining the value of a function designator (d. section 
5.4.4). The process will in the general case be understood to take place 
in three steps as follows: 

4.2.3.1. Any subscript expressions occurring in the left part variables are 
evaluated in sequence from left to right. 

4.2.3.2. The expression of the statement is evaluated. 

4.2.3.3. The value of the expression is assigned to all the left part variab­
les, with any subscript expressions having values as evaluated in step 
4.2·3·1. 
4.2.4. Types. The type associated with all variables and procedure 
identifiers of a left part list must be the same. If this type is Boolean, 
the expression must likewise be Boolean. If the type is real or integer, 
the expression must be arithmetic. If the type of the arithmetic ex­
pression differs from that associated with the variables and procedure 
identifiers, appropriate transfer functions are understood to be auto­
matically invoked. For transfer from real to integer type the transfer 
function is understood to yield a result equivalent to 

entier(E+O.5) 
where E is the value of the expression. The type associated with a 
procedure identifier is given by the declarator which appears as the first 
symbol of the corresponding procedure declaration (d. section 5.4.4). 
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4.3. Go to statements 
4.3.1. Syntax. 
<go to statement)::= goto <designational expression) 

4.3.2. Examples. goto 8 
goto exit[n+1J 
goto Town [if y < 0 then N else N + 1J 
goto if Ab < c then 17 else q [if w < 0 then 2 else n J 

4.3.3. Semantics. A go to statement interrupts the normal sequence of 
operations, defined by the write-up of statements, by defining its suc­
cessor explicitly by the value of a designational expression. Thus the 
next statement to be executed will be the one having this value as its 
label. 

4-3.4. Restriction. Since labels are inherently local, no go to statement 
can lead from outside into a block. A go to statement may, however, lead 
from outside into a compound statement. 

4.3.5. Go to an undefined switch designator. A go to statement is 
equivalent to a dummy statement if the designational expression is a 
switch designator whose value is undefined. 

4.4. Dummy statements 
4.4.1. Syntax. 
<dummy statement) ::= <empty) 

4.4.2. Examples. 
L: 
begin .... ; John: end 

4.4.3. Semantics. A dummy statement executes no operation. It may 
serve to place a label. 

4.5. Conditional statements 
4.5.1. Syntax. 
<if clause) :: = if <Boolean expression) then 
<unconditional statement) ::= <basic statement) I 

<compound statement) I <block) 
<if statement)::= <if clause) <unconditional statement) 
<conditional statement)::= <if statement) I 

<if statement) else <statement) I <if clause) <for statement) I 
<label): <conditional statement) 

4.5.2. Examples. 
if x>O then n:= n+1 
if v > u then V: q := n+m else goto R 
if s<O V P-;;;'Q then AA: begin if q<v then a:= v!s 

else y : = 2 X a end else if v> s then a : = v-q 
else if v > s-l then goto 5 
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4.5.3- Semantics. Conditional statements cause certain statements to be 
executed or skipped depending on the running values of specified Boolean 
expressions. 

4.5.3.1. If statement. The unconditional statement of an if statement will 
be executed if the Boolean expression of the if clause is true. Otherwise 
it will be skipped and the operation will be continued with the next 
statement. 

4.5.3.2. Conditional statement. According to the syntax two different 
forms of conditional statements are possible. These may be illustrated 
as follows: 

ifB1 then S1 else ifB2 then S2 else S3; S4 

and 

ifB1 then S1 else ifB2 then S2 else ifB3 then S3; S4 

Here B 1 to B 3 are Boolean expressions, while S 1 to S 3 are unconditional 
statements. S4 is the statement following the complete conditional 
statement. 

The execution of a conditional statement may be described as fol­
lows: The Boolean expressions of the if clauses are evaluated one after 
the other in sequence from left to right until one yielding the value 
true is found. Then the unconditional statement following this Boolean 
is executed. Unless this statement defines its successor explicitly the 
next statement to be executed will be S4, i.e. the statement following the 
complete conditional statement. Thus the effect of the delimiter else 
may be described by saying that it defines the successor of the statement 
it follows to be the statement following the complete conditional state­
ment. 

The construction 

else <unconditional statement) 

is equivalent to 

else if true then <unconditional statement) 

If none of the Boolean expressions of the if clauses is true, the effect 
of the whole conditional statement will be equivalent to that of a dummy 
statement. 

For further explanation the following picture may be useful: 

t t,), 
ifB1 then S1 else ifB2 then S2 else S3; S4 

l _______ J l _______ J 
B1 false B2 false 
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4.5.4. Go to into a conditional statement. The effect of a go to statement 
leading into a conditional statement follows directly from the above 
explanation of the effect of else. 

4.6. For statements 

4.6.1. Syntax. 
<for list element) ::= <arithmetic expression) I 

<arithmetic expression) step <arithmetic expression) until 
<arithmetic expression) I 
<arithmetic expression) while <Boolean expression) 

<for list)::= <for list element) I <for list), <for list element) 
<for clause) ::= for <variable):= <for list) do 
<for statement) ::= <for clause) <statement) I 

<label): <for statement) 

4.6.2. Examples. 

for q:= 1 step s until n do A [q] := B[q] 
fork:=l, Vlx2whileVl<Ndo 
for i:= I +G, L, 1 step 1 until N, C +D do A [k, iJ := B[k, i] 

4.6.3. Semantics. A for clause causes the statement S which it precedes 
to be repeatedly executed zero or more times. In addition it performs a 
sequence of assignments to its controlled variable. The process may be 
visualized by means of the following picture: 

t 
Initialize; test; statement S; advance; successor 

l ______________ J 
for list exhausted 

In this picture the word initialize means: perform the first assignment 
of the for clause. Advance means: perform the next assignment of the 
for clause. Test determines if the last assignment has been done. If so, 
the execution continues with the successor of the for statement. If not, 
the statement following the for clause is executed. 

4.6.4. The for list elements. The for list gives a rule for obtaining the 
values which are consecutively assigned to the controlled variable. This 
sequence of values is obtained from the for list elements by taking these 
one by one in the order in which they are written. The sequence of values 
generated by each of the three species of for list elements and the cor­
responding execution of the statement S are given by the following rules: 

4.6.4.1. Arithmetic expression. This element gives rise to one value, 
namely the value of the given arithmetic expression as calculated im­
mediately before the corresponding execution of the statement S. 
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4.6.4.2. Step-until-element. An element of the form A step B until C, 
where A, B, and C are arithmetic expressions, gives rise to an execution 
which may be described most concisely in terms of additional ALGOL 
statements as follows: 

V:=A; 
L 1: if (V - C) X sign (B) > 0 then goto Element exhausted; 

Statement S; 
V:= V+B; 
goto Ll; 

where V is the controlled variable of the for clause and Element ex­
hausted points to the evaluation according to the next element in the for 
list, or if the step-until-element is the last of the list, to the next statement 
in the program. 

4.6.4.3. While-element. The execution governed by a for list element of 
the form E while F, where E is an arithmetic and F a Boolean expresion, 
is most concisely described in terms of additional ALGOL statements as 
follows: 

L3: V:= E; 
if -, F then goto Element exhausted; 
Statement S; 
goto L3; 

where the notation is the same as in 4.6.4.2 above. 

4.6.5. The value of the controlled variable upon exit. Upon exit out of 
the statement S (supposed to be compound) through a go to statement 
the value of the controlled variable will be the same as it was immediately 
preceding the execution of the go to statement. 

If the exit is due to exhaustion of the for list, on the other hand, the 
value of the controlled variable is undefined after the exit. 

4.6.6. Go to leading into a for statement 
The effect of a go to statement, outside a for statement, which refers 

to a label within the for statement, is undefined. 

4.7. Procedure statements 

4.7.1. Syntax. 
<actual parameter) ::= <string) I <expression) I <array identifier) I 

<switch identifier) I <procedure identifier) 
<letter string) ::= <letter) I <letter string) <letter) 
<parameter delimiter) ::= , I ) <letter string): ( 
<actual parameter list) : : = <actual parameter) I 

<actual parameter list) <parameter delimiter) <actual parameter) 
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<actual parameter part) ::= <empty) I «actual parameter list») 
<procedure statement) :: = <procedure identifier) 

< actual parameter part) 

4.7.2. Examples. Spur (A) Order: (7) Result to: (V) 
Transpose (W, v+l) 
Absmax(A, N, M, Yy, I, K) 
Innerproduct(A[t, P, u], B[P], 10, P, Y) 

These examples correspond to examples given in section 5.4.2. 

4.7.3. Semantics. A procedure statement serves to invoke (call for) the 
execution of a procedure body (d. section 5.4. procedure declarations). 
Where the procedure body is a statement written in ALGOL the effect 
of this execution will be equivalent to the effect of performing the fol­
lowing operations on the program at the time of execution of the proce­
dure statement: 

4.7-3.1. Value assignment (call by value). All formal parameters quoted 
in the value part of the procedure declaration heading are assigned the 
values (d. section 2.8. Values and types) of the corresponding actual 
parameters, these assignments being considered as being performed 
explicitly before entering the procedure body. The effect is as though an 
additional block embracing the procedure body were created in which 
these assignments were made to variables local to this fictitious block 
with types as given in the corresponding specifications (d. section 5.4.5). 
As a consequence, variables called by value are to be considered as non­
local to the body of the procedure, but local to the fictitious block 
(d. section 5.4. 3). 

4.7-3.2. Name replacement (call by name). Any formal parameter not 
quoted in the value list is replaced, throughout the procedure body, by 
the corresponding actual parameter, after enclosing this latter in paren­
theses wherever syntactically possible. Possible conflicts between identi­
fiers inserted through this process and other identifiers already present 
within the procedure body will be avoided by suitable systematic 
changes of the formal or local identifiers involved. 

4.7.3.3. Body replacement and execution. Finally the procedure body, 
modified as above, is inserted in place of the procedure statement and 
executed. If the procedure is called from a place outside the scope of any 
non-local quantity of the procedure body the conflicts between the 
identifiers inserted through this process of body replacement and the 
identifiers whose declarations are valid at the place of the procedure 
statement or function designator will be avoided through suitable 
systematic changes of the latter identifiers. 
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4.7.4. Actual-formal correspondence. The correspondence between the 
actual parameters of the procedure statement and the formal parameters 
of the procedure heading is established as follows: The actual parameter 
list of the procedure statement must have the same number of entries 
as the formal parameter list of the procedure declaration heading. The 
correspondence is obtained by taking the entries of these two lists in the 
same order. 

4.7.5. Restrictions. For a procedure statement to be defined it is evi­
dently necessary that the operations on the procedure body defined in 
sections 4.7.3.1 and 4.7.3-2 lead to a correct ALGOL statement. 

This imposes the restriction on any procedure statement that the 
kind and type of each actual parameter be compatible with the kind and 
type of the corresponding formal parameter. Some important particular 
cases of this general rule are the following: 

4.7.5.1. If a string is supplied as an actual parameter in a procedure 
statement or function designator, whose defining procedure body is an 
ALGOL 60 statement (as opposed to nOn-ALGOL code, d. section 4.7.8), 
then this string can only be used within the procedure body as an actual 
parameter in further procedure calls. Ultimately it can only be used by 
a procedure body expressed in nOn-ALGOL code. 

4.7.5.2. A formal parameter which occurs as a left part variable in an 
assignment statement within the procedure body and which is not called 
by value can only correspond to an actual parameter which is a variable 
(special case of expression). 

4.7.5.3. A formal parameter which is used within the procedure body as 
an array identifier can only correspond to an actual parameter which 
is an array identifier of an array of the same dimensions. In addition if 
the formal parameter is called by value the local array created during 
the call will have the same subscript bounds as the actual array. 

4.7.5.4. A formal parameter which is called by value cannot in general 
correspond to a switch identifier or a procedure identifier or a string, 
because these latter do not possess values (the exception is the procedure 
identifier of a procedure declaration which has an empty formal para­
meter part (d. section 5.4.1) and which defines the value of a function 
designator (d. section 5.4.4). This procedure identifier is in itself a 
complete expression). 

4.7.5.5. Any formal parameter may have restrictions on the type of the 
corresponding actual parameter associated with it (these restrictions 
may, or may not, be given through specifications in the procedure 
heading). In the procedure statement such restrictions must evidently 
be observed. 
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4.7.6. Deleted. 

4.7.7. Parameter delimiters. All parameter delimiters are understood to 
be equivalent. No correspondence between the parameter delimiters 
used in a procedure statement and those used in the procedure heading 
is expected beyond their number being the same. Thus the information 
conveyed by using the elaborate ones is entirely optional. 

4.7.8. Procedure body expressed in code. The restrictions imposed on a 
procedure statement calling a procedure having its body expressed in 
nOn-ALGOL code evidently can only be derived from the characteristics 
of the code used and the intent of the user and thus fall outside the 
scope of the reference language. 

5. Declarations 

Declarations serve to define certain properties of the quantities used 
in the program, and to associate them with identifiers. A declaration of 
an identifier is valid for one block. Outside this block the particular 
identifier may be used for other purposes (d. section 4.1.3). 

Dynamically this implies the following: at the time of an entry into 
a block (through the begin since the labels inside are local and therefore 
inaccessible from outside) all identifiers declared for the block assume 
the significance implied by the nature of the declarations given. If 
these identifiers had already been defined by other declarations out­
side they are for the time being given a new significance. Identifiers 
which are not declared for the block, on the other hand, retain their old 
meaning. 

At the time of an exit from a block (through end, or by a go to 
statement) all identifiers which are declared for the block lose their local 
significance. 

A declaration may be marked with the additional declarator own. 
This has the following effect: upon a reentry into the block, the values 
of own quantities will be unchanged from their values at the last exit, 
while the values of declared variables which are not marked as own are 
undefined. Apart from labels and formal parameters of procedure 
declarations and with the possible exception of those for standard 
functions (d. sections 3.2.4 and 3.2.5) all identifiers of a program must 
be declared. No identifier may be declared more than once in anyone 
block head. 

Syntax. 

<declaration) ::= <type declaration) I <array declaration) I 
<switch declaration) I <procedure declaration) 

f9 Rutishauser, Description of ALGOL 60 
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5.1. Type declarations 

5.1.1. Syntax. 
<type list) : : = < simple variable) , <simple variable), <type list) 
<type) ::= real' integer, Boolean 
<local or own type) ::= <type)' own <type) 
<type declaration) ::= <local or own type) <type list) 

5.1.2. Examples. integer p, q, S 

own Boolean Acryl, n 

5.1.3. Semantics. Type declarations serve to declare certain identifiers to 
represent simple variables of a given type. Real declared variables may 
only assume positive or negative values including zero. Integer declared 
variables may only assume positive and negative integral values including 
zero. Boolean declared variables may only assume the values true and 
false. 

In arithmetic expressions any position which can be occupied by a 
real declared variable may be occupied by an integer declared variable. 

For the semantics of own, see the fourth paragraph of section 5 
above. 

5.2. Array declarations 

5.2.1. Syntax. 

<lower bound)::= <arithmetic expression) 
<upper bound)::= <arithmetic expression) 
<bound pair)::= <lower bound): <upper bound) 
<bound pair list) ::= <bound pair) , <bound pair list), <bound pair) 
< array segment) : : = <array identifier) [<bound pair list) J , 

<array identifier), <array segment) 
<array list) ::= <array segment), <array list), <array segment) 
<array declaration) ::= array <array list) , 

<local or own type) array <array list) 

5.2.2. Examples. array a, b, c [7: n, 2: mJ, s [-2: 10J 
own integer array A [if c < 0 then 2 else 1: 20J 
real array q [-7: -lJ 

5.2.3. Semantics. An array declaration declares one or several identifiers 
to represent multidimensional arrays of subscripted variables and gives 
the dimensions of the arrays, the bounds of the subscripts, and the types 
of the variables. 

5.2.3.1. Subscript bounds. The subscript bounds for any array are given 
in the first subscript bracket following the identifier of this array in the 
form of a bound pair list. Each item of this list gives the lower and upper 
bound of a subscript in the form of two arithmetic expressions separated 
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by the delimiter:. The bound pair list gives the bounds of all subscripts 
taken in order from left to right. 

5.2.3.2. Dimensions. The dimensions are given as the number of entries 
in the bound pair lists. 

5.2.3.3. Types. All arrays declared in one declaration are of the same 
quoted type. If no type declarator is given the type real is understood. 

5.2.4. Lower upper bound expressions. 

5.2.4.1. The expressions will be evaluated in the same way as subscript 
expressions (d. section 3.1.4.2). 

5.2.4.2. The expressions can only depend on variables and procedures 
which are non-local to the block for which the array declaration is valid. 
Consequently in the outermost block of a program only array declara­
tions with constant bounds may be declared. 

5.2.4.3. An array is defined only when the values of all upper subscript 
bounds are not smaller than those of the corresponding lower bounds. 

5.2.4.4. The expressions will be evaluated once at each entrance into the 
block. 

5.2.5. The identity of subscripted variables. The identity of a subscripted 
variable is not related to the sUbscript bounds given in the array de­
claration. However, even if an array is declared own the values of the 
corresponding subscripted variables will, at any time, be defined only 
for those of these variables which have subscripts within the most 
recently calculated subscript bounds. 

5.3. Switch declarations 

5.3.1. Syntax. 
<switch list) ::= <designational expression) I 

<switch list), <designational expression) 
<switch declaration)::= switch <switch identifier):= <switch list) 

5.3.2. Examples. switch 5:= 51,52, Q[m], if v > -5 then 53 else 54 
switch Q:= pl, W 

5.3.3. Semantics. A switch declaration defines the set of values of the 
corresponding switch designators. These values are given one by one 
as the values of the designational expressions entered in the switch list. 
With each of these designational expressions there is associated a positive 
integer, 1, 2, ... , obtained by counting the items in the list from left 
to right. The value of the switch designator corresponding to a given 
value of the subscript expression (d. section 3.5. Designational ex­
pressions) is the value of the designational expression in the switch list 
having this given value as its associated integer. 

19' 
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5.3.4. Evaluation of expressions in the switch list. An expression in the 
switch list will be evaluated every time the item of the list in which the 
expression occurs is referred to, using the current values of all variables 
involved. 

5.3.5. Influence of scopes. If a switch designator occurs outside the 
scope of a quantity entering into a designational expression in the switch 
list, and an evaluation of this switch designator selects this designational 
expression, then the conflicts between the identifiers for the quantities 
in this expression and the identifiers whose declarations are valid at the 
place of the switch designator will be avoided through suitable systematic 
changes of the latter identifiers. 

5.4. Procedure declarations 

5.4.1. Syntax. 
<formal parameter) ::= <identifier) 
<formal parameter list)::= <formal parameter) I 

<formal parameter list) <parameter delimiter) <formal parameter) 
<formal parameter part) ::= <empty) I «formal parameter list») 
<identifier list) ::= <identifier) I <identifier list), <identifier) 
<value part) ::= value <identifier list); I <empty) 
<specifier) :: = string I <type) I array I <type) array I label I switch I 

procedure I <type) procedure 
<specification part) ::= <empty) I <specifier) <identifier list); I 

<specification part) <specifier) <identifier list); 
<procedure heading) : : = <procedure identifier) <formal parameter part) ; 

<value part) <specification part) 
<procedure body) ::= <statement) I <code) 
<procedure declaration) : : = 

procedure <procedure heading) <procedure body) I 
<type) procedure <procedure heading) <procedure body) 

5.4.2. Examples (see also the examples at the end of the report). 

procedure Spur (a) Order: (n) Result: (s); value n; 
array a; integer n; real s; 
begin integer k; 
s:= 0; 
for k:= 1 step 1 until n do s:= s+a[k, k] 
end 

procedure Transpose (a) Order: (n); value n; 
array a; integer n; 
begin real w; integer i, k; 
for i:= 1 step 1 until n do 

for k:= 1 +i step 1 until n do 
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begin w := a[i, k]; 

end 

a[i, k]:= ark, i]; 
ark, i] := w 

end Transpose 

integer procedure Step (u); real u; 
Step:= if O-;;;;'u A u-;;;;'l then 1 else 0 

procedure Absmax (a) Size: (n, m) Result: (y) Subscripts: (i, k); 
comment The absolute greatest element of the matrix a, of size n by m 
is transferred to y, and the subscripts of this element to i and k; 
array a; integer n, m, i, k; real y; 
begin integer p, q; 
y:= 0; 
for p:= 1 step 1 until n do for q:= 1 step 1 until m do 
if abs (a[p, q]) > y then begin y:= abs (a[p, q]); 

i:= p; k:= q end end Absmax 

procedure Innerproduct (a, b) Order: (k, P) Result: (y); value k; 
integer k, p; real y, a, b; 
begin real s; 
s:= 0; 
for p:= 1 step 1 until k do s:= s+axb; 
y:= s 
end I nnerproduct 

5.4.3. Semantics. A procedure declaration serves to define the procedure 
associated with a procedure identifier. The principal constituent of a 
procedure declaration is a statement or a piece of code, the procedure 
body, which through the use of procedure statements and/or function 
designators may be activated from other parts of the block in the head 
of which the procedure declaration appears. Associated with the body 
is a heading, which specifies certain identifiers occurring within the body 
to represent formal parameters. Formal parameters in the procedure body 
will, whenever the procedure is activated (d. section 3.2. Function 
designators and section 4.7. Procedure statements)be assigned the values 
of or replaced by actual parameters. Identifiers in the procedure body 
which are not formal will be either local or non-local to the body depend­
ing on whether they are declared within the body or not. Those of them 
which are non-local to the body may well be local to the block in the 
head of which the procedure declaration appears. The procedure body 
always acts like a block, whether it has the form of one or not. Con­
sequently the scope of any label labelling a statement within the body 
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or the body itself can never extend beyond the procedure body. In 
addition, if the identifier of a formal parameter is declared anew within 
the procedure body (including the case of its use as a label as in section 
4.1.3), it is thereby given a local significance and actual parameters which 
correspond to it are inaccessible throughout the scope of this inner local 
quantity. 

5.4.4. Values of function designators. For a procedure declaration to 
define the value of a function designator there must, within the procedure 
body, occur one or more explicit assignment statements with the proce­
dure identifier in a left part; at least one of these must be executed, and 
the type associated with the procedure identifier must be declared 
through the appearance of a type declarator as the very first symbol 
of the procedure declaration. The last value so assigned is used to 
continue the evaluation of the expression in which the function de­
signator occurs. Any occurrence of the procedure identifier within the 
body of the procedure other than in a left part in an assignment state­
ment denotes activation of the procedure. 

5.4.5. Specifications. In the heading a specification part, giving in­
formation about the kinds and types of the formal parameters by means 
of an obvious notation, may be included. In this part no formal para­
meter may occur more than once. Specifications of formal parameters 
called by value (d. section 4.7.3.1) must be supplied and specifications 
of formal parameters called by name (d. section 4.7-3.2) may be omitted. 

5.4.6. Code as procedure body. It is understood that the procedure body 
may be expressed in nOn-ALGOL language. Since it is intended that the 
use of this feature should be entirely a question of hardware representa­
tion, no further rules concerning this code language can be given within 
the reference language. 

Examples of procedure declarations 

Example 1 

procedure euler (fct, sum, eps, tim); value eps, tim; integer tim; 

real procedure fct; real sum, eps; 

comment euler computes the sum of fct(i) for i from zero up to infinity by 
means of a suitably refined euler transformation. The summation is stopped 
as soon as tim times in succession the absolute value of the terms of the 
transformed series are found to be less than eps. Hence, one should provide 
a function fct with one integer argument, an upper bound eps, and an 
integer tim. The output is the sum sum. euler is particularly efficient in the 
case of a slowly convergent or divergent alternating series; 
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begin integer i. k. n. t; array m[O: 15]; real mn. mp. ds; 
i:= n:= t:= 0; m[O] := Ict(O); sum:= m[0]/2; 
nextterm: i:= i+1; mn := Ict(i); 

end euler 

for k:= 0 step 1 until n do 
begin mp:= (mn+m[k])/2; m[k] := mn; 

mn : = mp end means; 
if (abs(mn) <abs(m[n])) A (n < 15) then 

begin ds:= mn/2; n:= n+1; m[n]:= mn end accept 
else ds:= mn; 
sum:= sum+ds; 
if abs(ds) <eps then t:= t+1 else t:= 0; 
if t < tim then goto nextterm 

Example 21 

procedure RK(x. y. n. FKT. eps. eta. xE. yE. Ii); value x. y; integern; 
Boolean Ii; real x. eps. eta. xE; array y. yE; procedureFKT; 
comment RK integrates the system y~= Ik (x. YI. Y2 • ...• Yn) (k= 1.2 •... n) 
01 ditferential equations with the method 01 Runge-Kutta with automatic 
search lor appropriate length 01 integration step. Parameters are: The 
initial values x and y[k] lor x and the unknown lunctions Yk(X). The 
order n 01 the system. The procedure FKT(x. y. n. z) which represents the 
system to be integrated. i.e. the set 01 lunctions Ik' The tolerance values eps 
and eta which govern the accuracy 01 the numerical integration. The end 
01 the integration interval xE. The output parameter yE which represents 
the solution at X= xE. The Boolean variable Ii. which must always be given 
the value true lor an isolated or first entry into RK. If however the functions 
y must be available at several meshpoints xo. Xl •...• xn • then the procedure 
must be called repeatedly (with x=xk• XE=XHI • for k=O.l • ...• n-1) 
and then the later calls may occur with li= false which saves computing 
time. The input parameters 01 FKT must be x. y. n. the output parameter z 
represents the set 01 derivatives z[k]=lk(x. y[l]. y[2] . ...• y[n]) lor x and 
the actual y·s. A procedure comp enters as a non-local identilier; 

begin 
array z. y1. y2. y3[1: nJ; real xl. x2. x3. H; Boolean out; 
integer k. i; own real s. Hs; 

I This RK-program contains some new ideas which are related to ideas of 
S. GILL. A process for the step by step integration of differential equations in an 
automatic computing machine. Proc. Camb. Phil. Soc. 47 (1951) p. 96. and E. FRO­
BERG, On the solution of ordinary differential equations with digital computing 
machines, Fysiograf. SaJlsk. Lund, F6rhd. 20 Nr. 11 (1950) p. 136-152. It must be 
clear however that with respect to computing time and round-off errors it may not 
be optimal, nor has it actually been tested on a computer. 
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procedure RKlST (x, y, h, xe, ye); real x, h, xe; array y, ye; 

comment RKlST integrates one single Runge-Kutta step 
with initial values x, y[k] which yields the output parameters 
xe= x+h and ye[k], the latter being the solution at xe. 
Important: the parameters n, FKT, z enter RKlST as non­
local entities; 

begin 
array w[l: n], a[l: 5]; integer k, j; 
a[l] := a[2] := a[5] := hj2; a[3] := a[4] := h; 
xe:= x; 

for k:= 1 step 1 until n do ye[k] := w[k] := y[k]; 

for j:= 1 step 1 until 4 do 
begin 

FKT(xe, w, n, z); 
xe:= x+a[j]; 

end j 

for k:= 1 step 1 until n do 
begin 

w[k]:= y[k]+a[j] xz[k]; 
ye[k]:= ye[k]+a[j+l] xz[k]j3 

end k 

end RKlST; 

Begin 0/ program: 

if /i then begin H:= xE-x; s:= 0 end else H:= Hs; 
out:= false; 

AA: if (x+2.01xH-xE>0)= (H>O) then 
begin Hs:= H; out:= true; H:= (xE-x)j2 end it; 
RKlST(x, y, 2 X H, xl, yl); 

BB: RKlST(x, y, H, x2, y2); RKlST(x2, y2, H, x3, y3); 
for k := 1 step 1 until n do 

if comp (yl[k], y3[k], eta) > eps then goto CC; 
comment comp (a, b, c) is a function designator, the value 0/ which 
is the absolute value 0/ the difference 0/ the mantissae 0/ a and b, alter 
the exponents 0/ these quantities have been made equal to the largest 0/ 
the exponents 0/ the originally given parameters a, b, c; 
x:= x3; if out then goto DD; 

for k := 1 step 1 until n do y[k] := y3[k]; 

if s= 5 then begin s:= 0; H:= 2 xH end it; 
s:= s+l; goto AA; 
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cc: H:= O.5xH; out:= false; xl=x2; 
for k:= 1 step 1 until n do yl[k] := y2[k]; 
goto BB; 

DD: for k:= 1 step 1 until n do yE[k] := y3[k] 
end RK 

Alphabetic index of definitions of concepts and syntactic units 

All references are given through section numbers. The references are 
given in three groups: 
def Following the abbreviation "def", reference to the syntactic de­

finition (if any) is given. 
synt Following the abbreviation" synt' , , references to the occurrences 

in metalinguistic formulae are given. References already quoted in 
the def-group are not repeated. 

text Following the word "text", the references to definitions given in 
the text are given. 

The basic symbols represented by signs other than underlined (bold 
faced. Publisher's remark) words have been collected at the beginning. 
The examples have been ignored in compiling the index. 

+ see: plus 
- see: minus 
X see: multiply 
/ -;- see: divide 
t see: exponentiation 
< ~ = ~ > =l= see: <relational operator) 
= :::> V 1\ -, see: <logical operator) 

see: comma 
see: decimal point 

10 see: ten 
see: colon 
see: semicolon 

: = see: colon equal 
u see: space 
Osee: parentheses 
[] see: subscript bracket 

see: string quote 

<actual parameter), def 3.2.1,4.7.1 
<actual parameter list), def 3.2.1,4.7.1 
<actual parameter part), def 3.2.1,4.7.1 
<adding operator), def 3.3.1 
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alphabet, text 2.1 
arithmetic, text 3.3.6 

<arithmetic expression), def 3.3.1 synt 3, 3.1.1, 3·3.1, 3.4.1, 4.2.1, 4.6.1, 
5.2.1 text 3.3.3 

<arithmetic operator), def 2.3 text 3.3.4 
array, synt 2.3, 5.2.1, 5.4.1 
array, text 3.1.4.1 

<array declaration), def 5.2.1 synt 5 text 5.2.3 
<array identifier), def 3.1.1 synt 3.2.1,4.7.1, 5.2.1 text 2.8 
<array list), def 5.2.1 
<array segment), def 5.2.1 
<assignment statement), def 4.2.1 synt 4.1.1 text 1, 4.2.3 

<basic statement), def 4.1.1 synt 4.5.1 
<basic symbol), def 2 
begin, synt 2.3,4.1.1 

<block), def 4.1.1 synt 4.5.1. text 1,4.1.3, 5 
<block head), def 4.1.1 

Boolean, synt 2.3, 5.1.1 text 5.1.3 
<Boolean expression), def 3.4.1 synt 3, 3.3.1, 4.2.1, 4.5.1, 4.6.1 text 3.4.3 
<Boolean factor), def 3.4.1 
<Boolean primary), def 3.4.1 
<Boolean secondary), def 3.4.1 
<Boolean term), def 3.4.1 
<bound pair), def 5.2.1 
<bound pair list), def 5.2.1 
<bracket), def 2.3 

<code), synt 5.4.1 text 4.7.8, 5.4.6 
colon:, synt 2.3,3.2.1,4.1.1,4.5.1,4.6.1,4.7.1, 5.2.1 
colon equal :=, synt 2·3,4.2.1,4.6.1, 5.3.1 
comma, , synt 2.3,3.1.1,3.2.1,4.6.1,4.7.1, 5.1.1, 5.2.1, 5.3.1, 5.4.1 
comment, synt 2.3 
comment convention, text 2.3 

<compound statement), def 4.1.1 synt 4.5.1 text 1 
<compound tail), def 4.1.1 
<conditional statement), def 4.5.1 synt 4.1.1 text 4.5.3 

<decimal fraction), def 2.5.1 
<decimal number), def 2.5.1 text 2.5.3 
decimal point., synt 2.3,2.5.1 

<declaration), def 5 synt 4.1.1 text 1, 5 (complete section) 
<declarator), def 2.3 
<delimiter), def 2.3 synt 2 



Revised Report on the Algorithmic Language ALGOL 60 299 

<designational expression), def 3.5.1 synt 3,4·3·1, 5·3.1 text 3·5·3 
<digit), def 2.2.1 synt 2,2.4.1,2.5.1 
dimension, text 5.2.3-2 
divide / -:-, synt 2.3,3.3.1 text 3.3.4·2 
do, synt 2.3,4.6.1 

<dummy statement), def 4.4.1 synt 4.1.1 text 4.4.3 

else, synt 2.3,3.3.1,3.4.1,3.5.1,4.5.1 text 4.5.3·2 
<empty), def 1.1 synt 2.6.1,3.2.1,4.4.1,4.7.1, 5.4.1 
end, synt 2.3,4.1.1 
entier, text 3.2.5 
exponentiation t, synt 2.3,3.3-1 text 3·3.4·3 

<exponent part), def 2.5.1 text 2.5-3 
<expression), def 3 synt 3.2.1,4.7.1 text 3 (complete section) 

<factor), def 3.3.1 
false, synt 2.2.2 
for, synt 2.3, 4.6.1 

<for clause), def 4.6.1 text 4.6.3 
<for list), def 4.6.1 text 4.6.4 
<for list element), def 4.6.1 text 4.6.4.1,4.6.4.2,4.6.4.3 
<formal parameter), def 5.4.1 text 5.4.3 
<formal parameter list), def 5.4.1 
<formal parameter part), def 5.4.1 
<for statement), def 4.6.1 synt 4.1.1,4.5.1 text 4.6 (complete section) 
<function designator), def 3.2.1 synt 3.3.1,3.4.1 text 3·2·3, 5.4.4 

gofo, synt 2.3,4.3.1 
<go to statement), def 4.3.1 synt 4.1.1 text 4.3.3 

<identifier), def 2.4.1 synt 3.1.1,3.2.1,3.5.1, 5.4.1 text 2.4.3 
<identifier list), def 5.4.1 
if, synt 2-3,3.3.1,4.5.1 

<if clause), def 3.3.1,4.5.1 synt 3.4·1,3.5.1 text 3.3.3,4.5.3.2 
<if statement), def 4.5.1 text 4.5.3.1 
<implication), def 3.4.1 
integer, synt 2.3, 5.1.1 text 5.1.3 

<integer), def 2.5.1 text 2.5.4 

label, synt 2.3, 5.4.1 
<label>, def 3.5.1 synt 4.1.1,4.5.1,4.6.1 text 1,4.1.3 
<left part), def. 4.2.1 
<left part list>, def 4.2.1 
<letter), def 2.1 synt 2,2.4.1,3.2.1,4.7.1 
<letter string>, def 3.2.1,4.7.1 
local, text 4.1.3 
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<local or own type), def 5.1.1 synt 5.2.1 
<logical operator), def 2.3 synt 3.4.1 text 3.4.5 
<logical value), def 2.2.2 synt 2, 3.4.1 
<lower bound), def 5.2.1 text 5.2.4 

minus -, synt 2.3,2.5.1,3.3.1 text 3.3.4.1 
multiply x, synt 2.3,3.3.1 text 3.3.4.1 

<multiplying operator), def 3.3.1 

non-local, text 4.1.3 
<number), def 2.5.1 text 2.5.3, 2.5.4 

<open string), def 2.6.1 
<operator), def 2.3 
own, synt 2.3, 5.1.1 text 5, 5.2.5 

<parameter delimiter), def 3.2.1, 4.7.1 synt 5.4.1 text 4.7.7 
parentheses 0, synt 2·3, 3·2.1, 3.3.1, 3.4.1, 3.5.1, 4.7.1,5.4.1, text 3.3.5.2 
plus +, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1 

<primary), def 3.3.1 
procedure, synt 2.3, 5.4.1 

<procedure body), def 5.4.1 
<procedure declaration), def 5.4.1 synt 5 text 5.4.3 
<procedure heading), def 5.4.1 text 5.4.3 
<procedure identifier), def 3.2.1 synt 3.2.1,4.7.1, 5.4.1 text 4.7.5.4 
<procedure statement), def 4.7.1 synt 4.1.1 text 4.7.3 
<program), def 4.1.1 text 1 
<proper string), def 2.6.1 

quantity, text 2.7 

real, synt 2.3, 5.1.1 text 5.1.3 
<relation), def 3.4.1, text 3.4.5 
<relational operator), def 2.3,3.4.1 

scope, text 2.7 
semicolon; , synt 2.3,4.1.1, 5.4.1 

<separator), def 2.3 
<sequential operator), def 2.3 
<simple arithmetic expression), def 3.3.1 text 3.3.3 
<simple Boolean), def 3.4.1 
<simple designational expression), def 3.5.1 
<simple variable), def 3.1.1 synt 5.5.1 text 2.4.3 
space u, synt 2.3, text 2.3,2.6.3 

<specification part), def 5.4.1 text 5.4.5 
<specificator), def 2.3 
<specifier), def 5.4.1 
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standard function, text 3.2.4, 3.2.5 
<statement), def 4.1.1, synt 4.5.1,4.6.1, 5.4.1 text 4 (complete section) 
statement bracket see: begin end 
step, synt 2.3,4.6.1 text 4.6.4.2 
string, synt 2-3, 5.4.1 

<string), def 2.6.1 synt 3.2.1,4.7.1 text 2.6-3 
string quotes' " synt 2.3, 2.6.1, text 2.6.3 
subscript, text 3.1.4.1 
subscript bound, text 5.2.3.1 
subscript brackets [], synt 2.3,3.1.1,3.5.1, 5.2.1 

<SUbscripted variable), def 3.1.1 text 3.1.4.1 
<subscript expression), def 3.1.1 syn t 3- 5 .1 
<subscript list), def 3.1.1 
successor, text 4 
switch, synt 2.3, 5.3.1, 5.4.1 

<switch declaration), def 5.3.1 synt 5 text 5.3-3 
<switch designator), def 3.5.1 text 3.5.3 
<switch identifier), def 3.5.1 synt 3·2.1,4.7.1, 5.3.1 
<switch list), def 5-3.1 

<term), def 3.3.1 
ten 10' synt 2-3, 2.5.1 
then, synt 2.3,3.3.1,4.5.1 
transfer function, text 3.2.5 
true, synt 2.2.2 

<type), def 5.1.1 synt 5.4.1 text 2.8 
<type declaration), def 5.1.1 synt 5 text 5.1.3 
<type list), def 5.1.1 

<unconditional statement), def 4.1.1,4.5.1 
<unlabelled basic statement), def 4.1.1 
<unlabelled block), def 4.1.1 
<unlabelled compound), def 4.1.1 
<unsigned integer), def 2.5.1,3.5.1 
<unsigned number), def 2.5.1 synt 3.3.1 
until, synt 2.3,4.6.1 text 4.6.4.2 

<upper bound), def 5.2.1 text 5.2.4 

value, synt 2.3, 5.4.1 
value, text 2.8, 3.3.3 

<value part), def 5.4.1 text 4.7.3.1 
<variable), def 3.1.1 synt 3.3.1,3.4.1,4.2.1,4.6.1, text 3.1.3 
<variable identifier), def 3.1.1 

while, synt 2.3,4.6.1 text 4.6.4·3 
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Note. This report is published in Numerische Mathematik, in the Communications 
of the ACM, and in the Journal of the British Computer Soc. Reproduction of this 
report for any purpose is explicitely permitted; reference should be made to this 
issue of Numerische Mathematik and to the respective issues of the Communications 
and the Journal of the British Computer Soc. as the source. 

Technical University Delft 

Delft, Holland 

W. L. van der Poel, 

(Chairman of Working Group 2.1 on ALGOL of the 

International Federation for Information Processing) 



Report on SUBSET ALGOL 60 (IFIP)l 

Introduction 

The present report contains the results of the work of IFIP Working 
Group 2.1 (WG 2.1) on establishing a subset of the algorithmic language 
ALGOL 60 as defined in the Revised Report on the Algorithmic Language 
ALGOL 60 [Numerische Mathematik 4, 420 (1963), Communications of 
the ACM 6, 1 (1963), and The Computer Journal 5, 349 (1963)]. 

The meaning of a subset of ALGOL 60 

By a subset of ALGOL 60 is here meant a language such that every 
program written in the subset language is automatically also a program 
written in ALGOL 60 and has the same meaning in both languages. 

The purposes of establishing a subset 

The main incentive to the work is the realization that the generality 
of some of the features of ALGOL 60 and the disagreement concerning the 
exact meaning of others have proved a considerable discouragement to 
some of the groups who have contemplated implementing the language 
and have caused most of the existing implementations to be based on 
subsets defined locally. Clearly, if no attempt is made to avoid it, this 
development will lead to the use of any number of languages, all subsets 
of ALGOL 60, but in many cases mutually incompatible ones. 

This state of affairs means a weakening of the efforts of the authors 
of ALGOL 60 toward establishing a common language, which may still be 
avoided if a subset which avoids the above-mentioned difficulties were 
defined and recommended by the official working group. 

In lending its support to this development the IFIPjWG 2.1 is not 
blind to the fact that to a certain extent it may reduce the effort spent 
on implementing the full ALGOL 60 language, and thus may decrease the 
effect of this language on users and implementors. However, this negative 
effect is counteracted not only by the positive benefits of the subset 
already mentioned, but also by the fact that the impact of the full 
ALGOL 60 on the computing world has already been very considerable, 
as evidenced by the attention given to it at recent meetings and in the 
literature. 

1 Numerische Mathematik 6, 454-458 (1964). 
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The development of the subset 

The members of WG 2.1 wish to acknowledge the extensive and 
valuable work on the establishment of subsets done by other bodies. The 
present SUBSET ALGOL 60 is, in fact, to a large extent based on such 
work, as is evident from the following historical notes. 

The work of WG 2.1 on defining the subset was begun during a 
meeting in Munich in August 1962. During this meeting a detailed com­
parison of two existing subsets, the ALCOR subset [ALGOL-Manual der 
ALCOR-Gruppe. Elektronische Rechenanlagen, 3, 206 (1961)], and 
SMALGOL [Smalgol-61. Communications of the ACM, 4, 499 (1961)J, 
was made, and tentative decisions on a number of the characteristics of 
the subset were taken. By September 1963, when the next meeting of 
WG 2.1 took place in Delft, a proposal for a subset prepared by the 
European Computer Manufacturers Association (ECMA) was kindly made 
available to WG 2.1. This proved to be particularly valuable to the 
WG 2.1 because of the care with which its stipulations had been phrased 
and was in fact used verbatim for many of the definitions of the present 
subset. 

The form of the definition of the subset 

The description of the subset consists of (1) the corrections necessary 
to convert the Revised Report on the Algorithmic Language ALGOL 60 
into a report defining the SUBSET ALGOL 60, and (2) explanatory remarks 
describing the effect of the defining changes in an informal manner only. 

Definition of SUBSET ALGOL 60 in terms of the Revised ALGOL 60 Report. 

Section Subset definitions 

2.1. 

2·3· 

2·3· 

Delete: "I A I B I ... I Y I Z " . 
Delete: ", or extended ... 
delimiter) ". 
Add: "Note: If a particular imple­
mentation requires capitals rather 
than small letters, one must regard 
them as a hardware representation 
for the small letters ". 

Delete: "I -;-" 

Delete from definition of declara­
tor "own I ".1 

Explanation 

Only one case of letters is 
provided for. 

The so-called integer divi­
sion is not included in the 
subset. 

The own concept is not in­
cluded in the subset. 

1 [Where typewritten copy uses underlining, this is replaced by boldface type 
in printed copy. - Ed.] 
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2.4·3· Replace: "They may be chosen 
freely" by: "Identifiers may be 
chosen freely; but the effects due 
to the occurrence of two different 
identifiers the first six basic sym­
bols of which are common are un­
defined". 

3 . 3 .1. Delete:" I -:-" 
3·3.4· Replace the words: "the following 

rules" of the last sentence by: "a 
set of rules. However, if the type 
of an arithmetic expression ac­
cording to the rules cannot be de­
termined without evaluating an 
expression or ascertaining the type 
or value of an actual parameter, 
it is real. These rules are". 

3.3.4.2. Replace: "The operations ... both 
denote" by: "The operation 
< term) / <factor) denotes". 
Delete last sentence. 

3 . 3 .4·3. Insert between " ... rules" and 
" : ": "with the exception that, if 
both the basis a and the exponent 
i are of integer type, then the 
exponent has to be an unsigned 
integer, otherwise the result is un­
defined". 

3.3.5.1. Delete: "-:-" 

3·5.1. 

3·5.1. 

3·5·3· 

Delete" I <unsigned integer)". 

Replace the last two formulae by: 
"<designational expression)::= 

<label) I <switch designator)". 

Delete: "In the general case ... is 
already found.". Replace" selects 
one of the designational expres­
sions ... a recursive process" by: 
"selects one of the labels con-

20 Rutishauser, Description of ALGOL 60 

In the subset identifiers are 
differentiated only up to 
six leading basic symbols. 

In the subset the type of 
an arithmetic expression 
will be in certain cases real 
where it will be integer in 
ALGOL 60. Thus arithmetic 
will be less precise in some 
cases. 

Exponentiation with inte­
ger basis and exponent is 
restricted in the subset. 

Integer labels are not pro­
vided for. 

In the subset only uncon­
ditional and unparenthe­
sized designational expres­
sions are provided for. 

See 5.3.1. 
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tained in the switch list of the 
switch declaration. The selection 
is obtained by counting these la­
bels from left to right". 

3.5.5. Delete. 

4.3.5. Delete. 

4.6.1. Replace:" <for clause) '" do" 
by: "<for clause) :: = for 

<variable identifier) : = 
<for list) do". 

4.7.3.2. Replace: "after enclosing this ... 
syntactically possible" by: "this 
actual parameter being an identi­
fier, or string, otherwise the name 
replacement is undefined". 

4.7.5. Insert after: " ... ALGOL state­
ment" and before ".": "in the 
sense of this subset". 

4.7.5.5. Replace by: "Kind and type of 
actual parameters must be the 
same as those of the corresponding 
formal parameters, if called by 
name". 

4.7.5. Add section 4.7.5.6: "No call of 
the procedure itself may occur 
during the execution of the state­
ments of the body of any proce­
dure, nor during the evaluation of 
those of its actual parameters, the 
corresponding formal parameters 
of which are called by name, nor 
during the evaluation of expres­
sions occurring in declarations in­
side the procedure". 

5. Delete first two sentences of 
fourth paragraph. 

The effect of a goto state­
ment involving an unde­
fined switch designator is 
undefined in the subset. 

The controlled variable in a 
for clause is restricted in 
the subset to be a variable 
identifier. 

In name replacement (call 
by name) the actual pa­
rameter can only be an 
identifier or a string. 

Recursive procedures and 
recursive use of procedures 
are not included. 
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5. Insert after "... anyone block 
head. " and before "Syntax" : 
"The identifier associated with a 
quantity declared in a declaration 
may not occur denoting that 
quantity more than once between 
the begin of the block in whose 
head that declaration occurs and 
the semicolon which ends that de­
claration, excepting the case where 
this occurrence is the occurrence 
of a procedure identifier in the left 
part list of an assignment state­
men t in the sense of section 5 .4.4. " . 

5.1.1. Replace the last two metalinguis­
tic formulae by: 
"<type declaration) :: = 

<type> <type list) " . 

5.1.3. Delete last sentence. 

5.2.1. Replace the last formula by: 
"<array declaration) :: = 

array <array list) I 
<type) array <array list)". 

5 .2.5. Delete" even if an array is de­
clared own". 

5.3.1. Replace:" <switch list) :: = 

< design a tional expression) I 
<switch list), <designational 
expression)" by: 

"<switch list) :: = <label) I 
<switch list), <label)". 

5.3.3. Replace: "These values ... its asso­
ciated integer" by: "These values 
are given as labels entered in the 
switch list. With each of these 
labels there is associated a positive 
integer 1,2, ... , obtained by count­
ing the items in the list from left 
to right. The value of the switch 
designator corresponding to a 
given value of the subscript ex-

20· 

In the subset the desig­
national expressions in a 
switch list are restricted to 
be labels only. 
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pression (d. section 3.5. Designa­
tional expressions) is the label in 
the switch list having this given 
value as its associated integer". 

5 . 3 A. Delete. 

5.3.5. Replace by: "Influence of scopes. 
If a switch designator occurs out­
side the scope of a label in the 
switch list, and an evaluation of 
this switch designator selects this 
label, then a possible conflict be­
tween the identifier used to denote 
this label and an identifier whose 
declaration is valid at the place of 
the switch designator will be 
avoided by a suitable change of 
this latter identifier.". 

504.3. Add: "No identifier may occur 
more than once in a formal pa­
rameter list.". 

50404. 

50404. 

504.5. 

Delete last sentence. 

Add to text: "A function designa­
tor must be such that all its pos-
sible uses in the form of a proce­
dure statement are equivalent to 
dummy statements". 

Replace third sentence by: "Spe­
cifications of all formal parameters 
if any must be supplied". 

Complete specification 
parts are required. 

This report has been reviewed by IFIP fTC 2 on Programming Languages 
in May 1964 and has been approved by the Council of the International 
Federation for Information Processing. Reproduction of this report for 
any purpose is explicitly permitted only in full. In making reference to 
this report the name IFIP SUBSET ALGOL 60 must be mentioned. IFIP 
does not authorise the language described in this report to be referred to 
as ALGOL without adding the word SUBSET. 

International Federation for Information Processing 
Working Group 2.1 on ALGOL 
Chairman: W. L. VAN DER POEL, 
Technological University Delft, 

Delft, Netherlands 



Report on Input-Output Procedures for ALGOL 60 1 

1. Introduction 

It was recognized in the IFIP/WG 2.1 on ALGOL that some procedures 
to be used in connection with input and output are considered as being 
primitives, which cannot be expressed otherwise than by means of a 
code body. Among these are the following ones: 

insymbol 
outsymbol 
length 
inreal 
outreal 
inarray 
outarray. 

(1 ) 

Apart from these primitives one needs in practice a fuller set of input­
output procedures. However, the language ALGOL 60 is so flexible that 
different schemes of I/0 procedures can be defined in it largely by means 
of the primitives mentioned above. A few examples of this will be given 
in section 4 of this report. 

2. Definitions 

It is recommended that, if not otherwise declared, the identifiers (1) 
will be associated with procedures which transfer values between the 
variables of the program and values carried in any kind of foreign media 
not otherwise accessible from the program. 

The corresponding procedure declarations are: 

procedure insymbol (channel, string, destination); value channel; 
integer channel, destination; string string; 
<procedure body) 

procedure outsymbol (channel, string, source); value channel, source; 
integer channel, source; string string; <procedure body) 

integer procedure length (string); string string; <procedure body) 

procedure inreal (channel, destination); value channel; 
integer channel; real destination; <procedure body) 

-----
1 Numerische Mathematik 6, 459--462 (1964). 
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procedure outreal (channel, source); value channel, source; 
integer channel; real source; <procedure body) 

procedure inarray (channel, destination); value channel; 
integer channel; array destination; <procedure body) 

procedure outarray (channel, source); value channel; 
integer channel; array source; <procedure body) 

The procedure statements and the function designator calling these 
procedures must have the following forms: 

insymbol «arithmetic expression) <parameter delimiter) <string) 
<parameter delimiter) <variable») 

outsymbol «arithmetic expression) <parameter delimiter) <string) 
<parameter delimiter) <arithmetic expression») 

length «string») 
inreal «arithmetic expression) <parameter delimiter) <variable») 
outreal «arithmetic expression) <parameter delimiter) 

< arithmetic expression») 
inarray «arithmetic expression) <parameter delimiter) 

<array identifier») 
outarray «arithmetic expression) <parameter delimiter) 

<array identifier») 

In all these cases, except for the call of length, the value of the first 
actual parameter must be a positive integer identifying an input or 
output channel available to the program. 

3. Actions of the procedure bodies 
The pair of procedures insymbol and outsymbol provides the means of 

communicating between foreign media and the variables of the program 
in terms of single basic symbols or any additional symbols. In either 
procedure the correspondence between the basic symbols and the values 
of variables in the program is established by mapping the sequence of 
the basic symbols given in the string supplied as the second parameter, 
taken in the order from left to right, onto the positive integers 1, 2, 3, ... 
Using this correspondence the procedure insymbol will assign to the type 
integer variable given as the third parameter the value corresponding 
to the next basic symbol appearing on the foreign medium. If this next 
basic symbol does not appear in the string given as the second parameter, 
the number 0 will be assigned. If the next symbol appearing in the input 
is not a basic symbol of ALGOL 60 a negative integer, corresponding to 
the symbol, will be assigned. 

Similarly the procedure outsymbol will transfer the basic symbol cor­
responding to the value of the third parameter to the foreign medium. 



Report on Input-Output Procedures for ALGOL 60 311 

If the value of the third parameter is negative a symbol corresponding 
to this value will be transferred. It is understood that where the foreign 
medium may be used both for insymbol and outsymbol, the negative 
integer values associated with each additional symbol will be the same 
for the two procedures. More generally, if additional symbols are used the 
corresponding values must be given as accompanying information with the 
program (d. the footnote to section 1 of the Revised ALGOL 60 Report). 

The type procedure length is introduced to enable the calculation of 
the length of a given (actual or formal) string to be made (d. example 
outstring). The value of length(s) is equal to the number of basic symbols 
of the open string enclosed between the outermost string quotes. 

The two procedures inreal and outreal form a pair. The procedure 
inreal will assign the next value appearing on the foreign medium to the 
real type variable given as the second parameter. Similarly, procedure 
outreal will transfer the value of the second actual parameter to the 
foreign medium. 

The representation of values on the foreign media will not be further 
described, except that it is understood that in so far as a medium can 
be used for both input and output a value which has been transferred to 
a given medium with the aid of a call of outreal will be represented in 
such a way that the same value, in the sense of numerical analysis (d. 
section 3.3-6), may be transferred back to a variable by means of pro­
cedure inreal, provided that an appropriate manipulation of the foreign 
medium has also been performed. 

Procedures inarray and outarray also form a pair; they transfer the 
ordered set of numbers forming the value of the array given as the second 
parameter, the array bounds being defined by the corresponding array 
declaration rather than by additional parameters (the mechanism for 
doing that is already available in ALGOL 60 for the value call of arrays). 
The order in which the elements of the array are transferred corresponds 
to the lexicographic order of the values of the subscripts, i.e. 

a[k1 , k2' ... , kmJ precedes a [jl' j2' ... , jmJ 

provided k; = ji (i = 1,2, ... ,p -1)} 
(1~p~m). 

kp< jp 

(2) 

It should be recognized that the possibly multidimensional structure 
of the array is not reflected in the corresponding numbers on the foreign 
medium, where they appear only as a linear sequence as defined by (2). 

The representation of the numbers on the foreign medium conforms 
to the same rules as given for inreal and outreal; in fact it is possible for 
example to input numbers by inreal which before have been output by 
outarray. 
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4. Examples 

procedure outboolean (channel, boolean); value boolean; integer channel; 
Boolean boolean; comment this procedure outputs a Boolean value 
as a basic symbol true or false; 
if boolean then outsymbol (channel, 'true', 1) 

else outsymbol (channel, 'false', 1) 
procedure outstring (channel, string); value channel; integer channel; 

string string; comment outputs the string string to the foreign 
medium; 

begin integer i; 
for i : = 1 step 1 until length (string) do outsymbol (channel, 

string, i) 
end 

procedure ininteger (channel, integer); value channel; 
integer channel, integer; 
comment inputs an integer which on the foreign medium appears 
as a sequence of digits, possibly preceded by a sign, and followed by 
a comma. Any other symbol in front of the sign is discarded; 

begin integer n, k; Boolean b; 
integer:= 0; b:= true; 
fork:=1,k+1 whilen=O 

do insymbol(channel, '0123456789- +', n); 
ifn=11 then b:=false; if n>10 then n:=1; 
for k:=1, k+1 while n=1=13 do 
begin integer: = 10 x integer + n -1; 

insymbol(channel, '0123456789- +,', n) 
end 1; 
if.., b then integer: = - integer 

end 
begin 

end 

begin array a[1:10J; 
<statements) ; 
outarray(15, a) 

end; 
begin array b [0: 1, 1: 5J; 

inarray(15, b); 
<statements) 

end 

The following example exhibits the use of inarray and outarray for 
inversion of a matrix including transfer of the matrix elements from and 
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to the foreign medium. It requires that an appropriate declaration for a 
matrix inversion procedure as well as the declaration of outstring as given 
above are inserted at appropriate places in the program. 

begin integer n; 
inreal(5, n); comment the matrix elements must be preceded by 

the order; 
begin array a [1: n, 1: nJ ; 

inarray (5, a); 

end; 

matrix inversion (n, a, singular); 
outarray (15, a); 
goto ex 

singular: outstring (15, t singular') ; 
ex: end 

5. Concluding remarks 

WG 2.1 does not propose any further means for input-output opera­
tions, but would like to draw attention to 

"A proposal for input-output conventions in ALGOL 60", by the ACM 
programming languages committee (Subcommittee on ALGOL, D. E. 
KNUTH, chairman), and to the extensive list of references at the end of 
that report. 

This report has been reviewed by IFIP fTC 2 on Programming Lan­
guages in May 1964 and has been approved by the Council of the Inter­
national Federation for Information Processing. Reproduction of this 
report for any purpose is explicitly permitted only in full. 

International Federation for Information Processing 
Working Group 2.1 on ALGOL 

Chairman: W. L. VAN DER POEL 
Technological University Delft 

Delft, Netherlands 



References 
[1] ADAMS, C. W., and J. H. LANING jr.: The MIT systems of automatic coding. 

Proceedings of a Symposium on Automatic Programming for Digital Com­
puters, p. 40-68. Washington DC, May 1954. 

[2] Algol-Bulletin. Aperiodically issued publication. No 1-15 (Nov. 1959-June 
1962) ed. by P. NAUR, No 16 and following (May 1964 and later) ed. by 
F. DUNCAN. 

[3] ARNOLDI, E. W.: The principle of minimized iterations in the solution of eigen­
value problems. Quart. Appl. Math. 9, 17-29 (1951). 

[4] BACHELOR, G. A., J. R. H. DEMPSTER, D. E. KNUTH, and J. SPERONI: Smal­
gol61. Comm. Ass. Compo Mach. 4, 499-502 (1961). 

[5] BACKUS, J. W., F. L. BAUER, H. BOTTENBRUCH, C. KATZ, A. J. PERLIS (Ed.), 
H. RUTISHAUSER, K. SAMELSON (Ed.), and J. H. WEGSTEIN: 
(a) Report on the algorithmic language ALGOL. Num. Math. 1, 41-60 
(1959). 
(b) Preliminary Report-Internat. Algebraic Language. Comm. Ass. Compo 
Mach. 1, No 12,8-22 (1958) (these are two identical reports). 

[6J - - J. GREEN, C. KATZ, J. MCCARTHY, P. NAUR (Ed.), A. J. PERILS, 
H. RUTISHAUSER, K. SAMELSON, B. VAUgUOIS, J. H. WEGSTEIN, A. VAN 
WI]NGAARDEN, and M. WOODGER: Report on the Algorithmic Language 
ALGOL 60. 
(a) Num. Math. 2,106-136 (1960). 
(b) Com. Ass. Compo Mach. 3, No 5,299-314 (1960). 

[7] - - - - - - - - - - - - - Revised Report on the Algorith­
mic Language ALGOL 60. 
(a) Num. Math. 4, 420-453 (1962/63). 
(b) Comm. Ass. Compo Mach. 6, No 1, 1-17 (1963). 
(c) Computer J. 5, 349-367 (1962/63). 
See also this volume, Appendix B. 

[8] BAUER, F. L., H. RUTISHAUSER, and E. STIEFEL: New aspects in numerical 
quadrature. Proceedings of Symposia in Applied Mathematics, vol. XV. 
Amer. Math. Soc. Providence, RI, 1963, p. 199-218. 

[9] BAUMANN, R.: ALGOL-Manual der ALCOR-Gruppe. Elektronische Rechenan­
lagen 3,206-212,259-265 (1961); 4,71-85 (1962). 

[10] BOEHM, C.: Calculatrices digitales du dechiffrage de formules logico-mathe­
matiques par la machine meme. Thesis ETH Ziirich 1954. 

[11] Control Data Corporation, CODAP1 Reference Manual. Control Data Corpora­
tion, Minneapolis 1963. 

[12] Deutscher NormenausschuI3, Darstellung von ALGOL-Symbolen auf 5-Spur­
Lochstreifen und 80-spaltigen Lochkarten. DIN-Normblatt 66006, Beuth 
Vertrieb GMBH, Berlin 1965. 

[13] ERSHOV, A. P.: Programming programme for the BESM computer (translated 
from Russian by M. NADLER), 158 p. London: Pergamon Press 1959. 

[14] FORSYTHE, G. E.: Generation and use of orthogonal polynomials for data 
fitting. J. Soc. Ind. Appl. Math. 5, 74-78 (1957). 

[15] GLENNIE, A. E.: Unpublished report. 



References 315 

[16J GRAU, A. A.: On the reduction of number range in the use of the Graeffe 
process. J. Ass. Compo Mach. 10, 538-544 (1963). 

[17J HENRICI, P.: Discrete variable methods in ordinary differential equations, 
407 p. New York and London: John Wiley & Sons 1962. 

[18J HOFFMANN, W., U. A. WALTHER: Elektronische Rechenmaschinen und In­
formationsverarbeitung. Nachrichtentechnische Fachberichte, Bd. 4. 229 S. 
Braunschweig: F. Vieweg & Sohn 1956. 

[19J IBM, Specifications for the IBM mathematical formula translating system 
FORTRAN. Preliminary report. Applied Science Division, Internat. Busi­
ness Machines Corporation, New York 1954. 

[20J IFIP, Report on SUBSET ALGOL 60. Ed. by W. L. VAN DER POEL. 
(a) Num. Math. 6, 454-458 (1964). 
(b) Comm. Ass. Compo Mach. 7, 626-628 (1964). 
See also this volume, Appendix B. 

[21J IFIP, Report on Input-Output-Procedures for ALGOL 60. 
(a) Num. Math. 6, 459--462 (1964). 
(b) Comm. Ass. Compo Mach. 7, 628-630 (1964). 
See also this volume, Appendix B. 

[22J KNUTH, D.: Proposal for input-output conventions in ALGOL 60. Report of 
the Subcommittee of the ACM Programming Languages Committee. Comm. 
Ass. Compo Mach. 7, 273-283 (1963). 

[23J KUNTZMANN, J.: Methodes numeriques. Interpolations-derivees. 252 p. Paris: 
Dunod 1959. 

[24J NEVILLE, E. H.: Iterative interpolation. J. Indian Math. Soc. 20, 87-120 
(1934). 

[25J NYSTROEM, E.J.: tiber die numerische Integration von Differentialgleichun­
gen. Acta Soc. Sci. Fenn. 50, No 13, 1-55 (1925). 

[26J RUTISHAUSER, H.: Automatische Rechenplanfertigung bei programmgesteuer­
ten Rechenmaschinen. Mitt. Nr 3 aus dem Inst. fur angewandte Math. der 
ETH, 45 p. Basel: Birkhauser 1952. 

[27J - Bemerkungen zum programmgesteuerten Rechnen. Vortrage uber Rechen­
anlagen, S. 34-37. Max-Planck-Institut fur Physik, Gottingen 1953. 

[28J - Der Quotienten-Differenzen-Algorithmus. Mitt. Nr 7 aus dem Inst. fur 
angew. Math. der ETH, 74 p. Basel: Birkhauser 1957. 

[29J - Zur Matrizeninversion nach GauB- Jordan. Z. angew. Math. u. Phys. 10, 
281-291 (1959). 

[30J - Interference with an ALGOL procedure. Annual Review in Automatic Pro­
gramming 2, 67-75. London: Pergamon Press 1961. 

[31J - Stabile Sonderfalle des Quotienten-Differenzen-Algorithmus. Num. Math. 
5,95-112 (1963). 

[32J SAMELSON, K., U. F. L. BAUER: Sequentielle Formelubersetzung. Elektroni­
sche Rechenanlagen 1,176-182 (1959). 

[33J -, and F. L. BAUER: Sequential formula translation. Comm. Ass. Compo Mach. 
3, No 2, 76-83 (1960). 

[34J SCHWARZ, H. R.: Introduction to ALGOL. Comm. Ass. Compo Mach. 5, 82-95 
(1962). 

[35J STIEFEL, E.: Kernel polynomials and their applications. NBS-AMS-Series 
49, 1-23. Washington D.C.: National Bureau of Standards 1958. 

[36J STOCK, J. R.: Die mathematischen Grundlagen fur die Organisation der elek­
tronischen Rechenmaschine der ETH. Mitt. Nr 6 aus dem Inst. fur angew. 
Math. der ETH, 76 p. Basel: Birkhauser 1956. 



316 References 

[37] TAYLOR, W. J.: Method of Lagrangian curvilinear interpolation. J. Research 
Nat. Bur. Standards 35, 151-155 (1945). 

[38] THURNAU, D. H.: Algorithm 195. Comm. Ass. Compo Mach. 6, 441 (1963). 
[39] WALL, H. S.: Analytic theory of continued fractions. Princeton: Van Nostrand 

1948. 
[40] WOODGER, M.: Supplement to the ALGOL-report. Comm. Ass. Compo Mach. 

6,18-20 (1963). 
[41] WYNN, P.: On a device for computing the e ... {S,,) transformation. Math. Tables 

and Other Aids to Compo 10, 91-96 (1956). 
[42] - Upon systems of recursion which obtain among the quotients of the Pade 

table. To appear. 
[43] ZURMUEHL, R: Praktische Mathematik fur Ingenieure und Physiker, 3. Auf I., 

548 S. Berlin-Gottingen-Heidelberg: Springer 1961-
[44] - Matrizen, 4. Auf I., 452 S. Berlin-Gottingen-Heidelberg: Springer 1964. 
[45] ZUSE, K.: tJber den allgemeinen Plankalkul als Mittel zur Formulierung sche­

matisch-kombinativer Aufgaben. Arch. Math. 1, 441-449 (1948/49). 

Books on ALGOL 

[46J AGEEV, M. I.: The fundamentals of the algorithmic language ALGOL 60 [Rus­
sian]. Obschichie Voprosy Programmirovaniya 1, 116 p. VychisI. Tsentr 
AN SSSR, 1964. 

[47J ANDERSEN, C.: Introduction to ALGOL 60, 57 p. Addison Wesley, Reading 
1964. 

[48] ARSAC, J., L. A. LENTIN, M. NIVAT et L. NOLIN: ALGOL 60. Theorie et prati­
que, 203 p. Paris: Gauthier-Villars 1965. 

[49] BAUMANN, R: ALGOL-Manual der ALcoR-Gruppe, 176 S. Munchen u. Wien: 
Oldenbourg 1965. 

[50J - M. FELICIANO, F. L. BAUER, and K. SAMELSON: Introduction to ALGOL 60, 
142p. Englewood Cliffs: Prentice-Hall 1964. 

[51J BOLLIET, L., N. GASTINEL et P. J. LAURENT: Un nouveau language scientifi­
que ALGOL, manuel pratique, 196 p. Paris: Hermann 1964. 

[52J DI]KSTRA, E. W.: A primer of ALGOL 60 programming, 114p. New York: 
Academic Press 1962. 

[53J EKMAN, T., and C. E. FROBERG: Introduction to ALGOL programming, 123 p. 
Lund: Studentlitteratur 1965. 

[54J KERNER, 1.0., U. G. ZIELKE: Einfiihrung in die algorithrnische Sprache ALGOL, 
283 S. Leipzig: Teubner 1966. 

[55J NICKEL, K.: ALGOL-Praktikum, 220 S. Karlsruhe: G. Braun 1964. 
[56J REEVES, C. M., and M. WELLS: A course on programming in ALGOL 60, 82 p. 

London: Chapman & Hall 1964. 
[57] THURNAU, D. H., R E. JOHNSON, and RJ. HAM: ALGOL-programming - a 

basic approach, 158 p. Denver: Big Mountain Press 1964. 



Subject Index 

ACM committee (on programming 
languages) 5 

Actual array designator 257 
- counterpart 185 
- -formal correspondence 185, 201 
- parameter 38, 66 
- -, restrictions for 189 
Adams-Bashforth method 107 
ALCOR (subset of ALGOL) 9 
Algebraic problems 95 
ALGOL, full 18 
- 585 
- 607 
- -, SUBSET 8 
- conferences of 1958, 1960, 19625 
- dialect 8 
- program 9, 165 
- report 6 
- working group of IFIP 9 
Algorithmic language 2, 4 
Alternative of conditional expression 50 
- of if-else-statement 78 
Argument 165 
Arithmetic expression 10, 39, 52 
- -, conditional 50 
- -, simple 39 
- operations, execution of 42 
- operator 20 
Arnoldi method 222 
Array 26 
-, components of 26 
-, dimension of 26 
- bounds 26, 148 
- -, evaluation of 148 
- called by value 189 
- declaration 146 
- designator, actual 257 
- -, formal 257 
- identifier 147 
- segment 147 
Assembly language 2 
Assignment statement 10, 56 
- symbol 56 
- variable 57 

Automatic programming 1 
Auxiliary conventions 18 

Banachiewicz (modification of Gauss-
elimination) 96 

Bandmatrix notation 129 
Base ten 21 
Basic symbols 18, 20 
- -, hardware representations of 21 
Binary Boolean operator 46, 47 
Bisection method 92 
Block 68, 145 
- (semantics) 157 
- (syntax) 69 
-, equivalence 185 
-, fictitious 174 
-, operand of 164 
- floor 158 
- head 69 
- level 158 
Boolean expression 52 
- -, conditional 51 
- expressions, simple 45 
- operator, binary 46, 47 
- primary 45 
- secondary 45 
Bound pair 147 
- variable 253 
Bounds, array 26, 148 
-, subscript (d. array bounds) 
Brackets 20,21 
Burroughs syntactical chart 19 

Call by name 180, 189 
- by value 180, 189 
Capital letters 18 
Channel number 229 
Chebyshev series development 114 
Choleski decomposition of a large 

matrix 238 
CHURCH'S lambda notation 254 
Circumscription of basic symbols 22, 23 
Class of syntactic objects 18 



318 Subject Index 

Closed form of conditional statement 77 
- loop 65,74 
CODAP 3, 207 
Code, external machine 2 
- procedure 205 
Colon 21 
Comma 21 
Comment 32 
Comparand 44 
Compatibility of types in assignment 

statements 58 
Compiler 1 
Complete program (d. ALGOL program) 
Component of an array 26 
Compound statement 12, 68 
Computations related to continued 

fractions 116 
Computer limitations 24, 122 
Concept, full name- 248 
Conditional arithmetic expression 50 
- Boolean expression 51 
- expression 48 
- -, alternative of 50 
- jump 74 
- statement (d. if-statement or if-else-

statement) 
- - 76 
- -, closed form of 77 
- -, open form of 77 
- - (efficiency considerations) 81 
Conjunction (logical operation) 47 
Constant, logical 20, 27 
-, negative 29 
-, numerical 27 
-, type of 28 
Continued fractions 116 
Control operation 230 
Controlled statement 84 
- variable 84 
- -, value of after termination of 

for-list 87 
Correspondence, actual-formal 185, 201 
Counterpart, actual 185 
-, formal 185 

Dandelin-Graeffe method 98 
Data processing applications 132 
Decimal digit 20 
- number 28 
- point 10 
Declaration 16, 144 
-, array 146 

Declaration, dynamic effect of 162 
-, function procedure 154, 197 
-, procedure 152, 172 
-, restrictions for 161 
-, switch 150 
-, type 145 
Declarator 20 
Decomposition of matrix, Choleski 

method 238 
Delimiter 21 
-, parameter 66 
Designator, function 36, 200 
-, switch 63 
Destination label 30 
Diagram, syntactic 19 
Differentiation of an arithmetic 

expression 13 7 
Digit, decimal 20 
Dimension of an array 26, 146 
DIN standard (for hardware 

representation) 22 
Diriclet problem 110 
Disjunction (logical operation) 47 
Division by zero 42 
Dummy operand 180 
- statement 62 
Dynamic effects of declarations 162 
- own arrays 244 
- rule for for-statements 86 

Economisation of ALGOL programs with 
aid of code procedures 210 

Effect, Gauss-Seidel 192 
Efficiency considerations in conditional 

statement 81 
- - in for-statements 92 
Ellipsis 19 
Empty array 148 
- for-list element 90 
- for-statement 90 
Environment of block 158 
- rule for global parameter 174 
- - for switches 1 51 
Epsilon algorithm 120 
Equivalence (logical operation) 47 
- block 185 
- rule for arithmetic expressions 41 
- - for Boolean expressions 47 
- - for if-else-statement 79 
Escalator method (matrix inversion by) 

244 
Escape symbol 22 



Subject Index 319 

Evaluation of array bounds 148 
- of function designator 201 
Execution of a procedure statement 185 
- of arithmetic operations 42 
- of parameter procedure 215 
- of procedure, interference with 218 
- of single logical operations 48 
Exit 165 
Exponent part 27,28 
Exponentiation 43 
- symbol 39 
Expression 52 
-, arithmetic 10, 39, 52 
-, -, equivalence rule for 41 
-, Boolean 45, 52 
-, conditional arithmetic 50 
-, - Boolean 51 
-, simple arithmetic 39 
-, - Boolean 45 
-, subscript 54 
-, conditional 48 
Extension (of an array) 146 
External machine code 2 

Factor 40 
Fictitious block 174 
Fixed point 24 
Floating point 24 
For-clause 12, 84 
For-list 84 
- element 84 
- -, empty 90 
For-statement 12, 83 
-, empty 90 
-, static 85 
-, termination of 86, 87 
- and conditional statements 88 
Form, structurized 38, 66, 154 
-, syntactic 18 
Formal array designator 257 
- counterpart 185 
- label 176 
- operand 174 
- parameter 154, 173 
- -, rule for 176 
- - called by value 185 
- - part 154 
- string 176 
Format handling 134 
Free variable 253 
French quotes 19 
Full ALGOL 18 

Full name-concept 248 
Function, standard 11, 37 
- designator 36, 200 
- -, evaluation of 201 
- procedure 37, 196 
- - declaration 154, 197 

GAMM Subcommittee for Programming 
Languages 5 

Gauss elimination 90, 95 
- -Seidel effects 192 
Generation of orthogonal polynomials 

113 
Global operand 174 
- -, suppressed 187 
- - of parameter procedure 225 
- parameter 174 
- -, environment rule for 174 
- quantity 159 
- - in procedure 179 
Goto-statement 13, 62 
Greek letters 27 
Grotesque type 21 

Hardware representation 21 
Head, block 69 
Heat equation 182, 214 
Hermite interpolation 102 
Hidden operand 164 
- - (of a procedure) 174 
Historical remarks on algorithmic 

languages 4 
HORNER'S rule 83 

Identifier 26 
-, array 147 
-, procedure 153 
-, standard function 37 
-, switch 63, 150 
If-clause 14, 50 
If-else-statement is, 76 
-, alternative of 76 
-, equivalence rule for 79 
If-statement 14, 71 
IFIP, ALGOL working group 9 
Implementation 8 
Implication (logical operation) 47 
Inaccuracy of real-type quantities 24 
Indentation in ALGOL text 21 
Independent procedure 205 



320 Subject Index 

Influence of roundoff errors in 
relations 44 

- - error in for-statements 89 
- of type in assignment statements 58 
- - in conditional expressions 52 
Input and output 227 
Input-output medium, resetting of 230 
Insymbol 228, 232 
Integer, unsIgned 28 
Interference with execution of procedure 

218 
Intermediate return 218 
Internal quantity of a procedure 179 
Interpolation and numerical quadrature 

100 
Inversion, matrix 169, 244 

Jensen device 249 
Jump 63 
-, conditional 74 
-, termination of for-list by 86 
- into for-statement 88 
- within if-else-statement 80 

Kinds of quantities 25 
Knuth report 227 

Label 13, 26, 29 
-, destination 30 
-, formal 176 
-, scope of 30, 158 
-, source 30 
Labelled statements 60 
Lagrange interpolation (Neville scheme) 

100 
Lambda notation 254 
Language, algorithmic 2 
-, assembly 2 
-, programming, definition of 18 
-, publication and hardware 6 
-, reference 6 
LAPLACE'S equation 109 
Least square problems 111 
Length (standard function) 39, 232 
- of identifier 27 
- of numerical constant 28 
Letter 20 
Local quantity 158 
- - in procedure 179 
Logical constant 20, 27 
- operation, execution of 48 
- operator 20 

Loop 83 
-, closed 65 
-, nested 83 

Machine code, external 2 
- -, internal 2 
Matrix inversion 169, 244 
Monotonicity as termination criterion 125 
Multiple assignment statement 57 
Multiplication symbol 10 

Name, call by 180, 186, 189 
-, reserved (for standard functions) 37 
-, - (for standard IIO-procedures) 227 
Name-concept, full 248 
Name conflict 186 
Negation (logical operation) 47 
Nested loop 83 
- parameter procedures 223 
Neville-Lagrange interpolation 100, 182 
Newton interpolation 103 
NEWTON'S method 97, 124 
Non-delimiter 21 
Number, decimal 28 
-, unsigned 27, 28 
Numerical constant 10, 27 
- integration of differential equations 

106 
Nystroem modification of Runge-Kutta 

method 106 

Object, syntactic 18 
Open form of conditional statement 77 
Operand, dummy 180 
-, formal 174 
-, global 174 
-, hidden 164 
-, - (of a procedure) 174 
-, predetermined 173 
-, suppressed global 187 
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- body 154 
- declaration 152, 172 
- heading 154 
- identifier 153 
- statement 65, 184 
- -, execution of 185 
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parameter delimiter (Fig. 20) 67 
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46 
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-- form 18 
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Term 40 
Termination criterion, monotonicityas 

125 
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- declaration 145 
- of function designator 39 
- of simple arithmetic expression 

42,43 
- of value 24 
- of variable 36 
Typography 21 

Unconditional statement 71 
Undefined situation 20 
- value 20 
Underflow 25 
- in orthonormalisa tion process 128 
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Zero, division by 42 
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