Die Grundlehren der
mathematischen Wissenschaften

in Einzeldarstellungen
mit besonderer Beriicksichtigung
der Anwendungsgebiete

Band 135

Herausgegeben von

J-L.Doob - E. Heinz - F. Hirzebruch - E. Hopf + H. Hopf
W.Maak - S. MacLane - W. Magnus - D. Mumford
M. M. Postnikov - F. K. Schmidt - D. S. Scott - K. Stein

Geschiftsfibrende Heransgeber
B. Eckmann und B. L. van der Waerden

Handbook for
Automatic Computation

Edited by
F. L. Bauer - A. S. Householder - F. W. J. Olver
H. Rutishauser - K. Samelson - E. Stiefel

Volumel - Part a

Heinz Rutishauser

Description of ALGOL 60

Springer-Verlag New York Inc. 1967

Prof. Dr. H. Rutishauser

Eidgendssische Technische Hochschule Ziirich

Geschiftsfithrende Herausgeber:

Prof. Dr. B. Eckmann

Eidgenossische Technische Hochschule Ziirich

Prof. Dr. B. L. van der Waerden

Mathematisches Institut der Universitit Ziirich

Alle Rechte, insbesondere das der Ubersetzung in fremde Sprachen, vorbehalten

Ohne ausdriickliche Genehmigung des Verlages ist es auch nicht gestattet, dieses
Buch oder Teile daraus auf photomechanischem Wege (Photokopie, Mikrokopie)
oder auf andere Art zu vervielfaltigen

ISBN-13: 978-3-642-86936-5 e-ISBN-13: 978-3-642-86934-1
DOI: 10.1007/978-3-642-86934-1
© by Springer-Verlag Berlin + Heidelberg 1967
Softcover reprint of the hardcover 1st edition 1967
Library of Congress Catalog Card Number 67-13537

Titel-Nr. 5118

Preface

Automatic computing has undergone drastic changes since the
pioneering days of the early Fifties, one of the most obvious being that
today the majority of computer programs are no longer written in
machine code but in some programming language like FORTRAN or
Arcor. However, as desirable as the time-saving achieved in this way
may be, still a high proportion of the preparatory work must be attributed
to activities such as error estimates, stability investigations and the like,
and for these no programming aid whatsoever can be of help. In this
respect, ALGOL, as an internationally standardized notation which avoids
computer-oriented concepts, provides another advantage, not often
mentioned, but one which was already the guiding principle at the very
beginning of the programming language venture: indeed, a correct
ALGoL program is the abstractum of a computing process for which the
necessary analyses have already been performed. It is the very purpose
of this Handbook to establish such abstract formulations of certain
computing processes. Therefore, numerical methods given in this Hand-
book in the form of ALGOL procedures may be put to immediate use
wherever ALGOL is known and understood; in fact, application of such a
method reduces to little more than calling the corresponding procedure.
This, however, requires that ALGOL programs be so designed that they
are really abstract in the sense that they do not make use of special
properties of a specific computer, and yet take into consideration the
general characteristics of digital computation which are (among others):
finite precision, finite storage, sequential arrangement of data on an
external medium, and — not to be forgotten — finite speed.

Proper use of the procedures published in this Handbook requires
of course a thorough knowledge of the language Arcor which is therefore
described in this introductory volume. This description is not given in
the style of the ALGOL reports (the most recent ones are reproduced
in appendix B of this volume) but was modeled after lectures on ALGOL
given at the Swiss Federal Institute of Technology, Zurich. In this way
we hope to serve both the beginners as well as the more experienced
numerical analyst.

For reasons to be explained later in §4 of this volume, this Handbook
sticks to SUBSET ALGoL 60, which is the official IFIP subset of ALGOL;
in fact, all programs to be collected in this Handbook shall either be
written in this SUBSET or else the deviations shall be clearly stated.
Consequently the present volume describes SUBSET ALGOL 60 rather

VI Preface

than full ALGoL. In addition to other advantages, this restriction allows
us to give a quantity-oriented description of the language, which from
the standpoint of a prospective user is to be preferred over a name-
oriented description (which is the only possible way of describing full
ArcoL).

It is understood that parallel to and following the development of
Arcor, further progress in the field of programming languages (and
formal languages in general) has been made. We mention how ALcor
has stimulated the construction of other algorithmic languages as well
as the development of new and more efficient methods to translate them
into machine code. We may furthermore mention another by-product
of ALcoL, namely the introduction of methods for defining algorithmic
languages concisely (e.g. the Backus notation). However, a comprehensive
report on all these activities, as desirable as it might be, would be far
beyond the scope of this Handbook, which is intended more as a tool
for users of ALGoL than for those interested in programming languages as
such. Instead, the reader is referred to Volume Ib (A. A. Gravu, U. HiLL,
and H. LaneMaAck: Translation of ALGoL 60. Edited by K. SAMELsON),
which deals with the problem of translating ALGOL text into machine
code; at the end of that volume the reader will find an extensive list
of references to papers on ALGoL and related topics.

The author is deeply indebted to Mr. F. T. PARKEL for his help in
preparing the manuscript and for his invaluable suggestions for im-
proving the text, and to Mr. F. VANNOTTI for testing the ALGOL programs
contained in this volume. Furthermore, the author wishes to thank
Prof. Dr. E. STIEFEL of the Swiss Federal Institute of Technology for
making available the use of the facilities of the computing center.

Zurich, September 1966 H. RUTISHAUSER

§1.
§2.
§3.

§ 4.
§5.

§ 6.

§7.

§8.

§9.

§ 10.

Contents

Chapter 1
Introduction

The Concept of Automatic Programming

Historical Remarks on Algorithmic Languages

The ALcoL Conferences of 1958, 1960, 1962
3.1. ALcoL 58 .
3.2. ALGOL 60
3.3. The Rome amendments of 1962 .

ArcoL Dialects and the IFIP Subset of ALGOL 60 .

Preliminary Definition of ALGoL

5.1. Arithmetic expressions and a551gnment statements .

5.2. For-statements

5.3. Compound statements

5.4. Labels and goto-statements .
5.5. The if-statement .

5.6. If-else-statements

5.7. Declarations

5.8. Complete programs

Chapter I1
Basic Concepts

Auxiliary Conventions .

6.1. Syntactic forms .
6.2. French quotes .

6.3. The ellipsis

6.4. The syntactic dlagram
6.5. Undefined situations .

The Basic Symbols of ALcoL .
7.1. Set of basic symbols .
7.2. Delimiters .
7.3. Typography .
7.4. Hardware representatlons .
Values
8.1. Types of values
8.2. Computer limitations .

8.3. Consequences of computer hmltatlons

Quantities and their Names
9.1. Kinds of quantities .
9.2. Identifiers
9.3. Scope of a quantlty

Numerical Constants .
10.1. Examples of unsigned numbers

18
18
19
19
19
20
20
20
21
21
21

24
24
24
25

25
25
26
27

27
28

VIII

§11.

§12.

§13.

§ 14.

§ 16.

§17.

Contents

10.2. Syntax .

10.3. Semantics

10.4. Types

10.5. Negative constants

Labels .

11.1. Syntax . . .
11.2. Source- and destlnatlon labels .
11.3. Semantics

11.4. Scopes of labels

Strings .
12.1. Examples .
12.2. Syntax .

12.3. Semantics

Comments . .
13.1. The comment conventlon .
13.2. Examples . .
13.3. Conflicting 51tuat1ons .

Chapter III
Expressions
Variables
14.1. Examples .
14.2. Syntax .
14.3. Semantics
14.4. Types

. Function Designators

15.1. Examples .
15.2. Syntax .
15.3. Semantics
15.4. Types

Simple Arithmetic Expressions .

16.1. Examples .

16.2. Syntax .

16.3. Semantics C
16.4. Type of the value of a s1mple arlthmetxc expression .
16.5. Confrontation of examples with conventional notation

Relations

17.1. Examples .
17.2. Syntax .
17.3. Semantics

. Simple Boolean Expressions

18.1. Examples .
18.2. Syntax .
18.3. Semantics

. Conditional Expressions .

19.1. Examples . .
19.2. Syntax of condltxonal arlthmetlc expressmns
19.3. Semantics L.
19.4. Conditional Boolean expressions .

28
28
28
29

29
30
30
30
30

30
31
31
31

32
32
32
32

34
35

36
36

36
37
37
39
39

39
40
40
41
43
43

43
44
44
44

45
45
45
46

48
48
50
50
51

§ 20.

§ 21.

§ 22.

§ 23.

§24.

§ 25.

§ 26.

§27.

§ 28.

§ 29.

Contents

19.5. Influence of types P
19.6. Syntax of general expressions .

19.7. Further examples involving condltlonal expressions

Subscript Expressions .
20.1. Syntax .

20.2. Semantics (Roundlng rule for subscrlpt express1ons)

20.3. On the use of subscript expressions

Chapter IV
Statements

Assignment Statements
21.1. Examples .

21.2. Syntax .

21.3. Semantics

21.4. Influence of types

Sequences of Statements .
22.1. Examples .

22.2. Syntax .

22.3. Semantics

Labelled Statements
23.1. Examples .
23.2. Syntax .
23.3. Semantics

The Dummy Statement
24.1. Syntax .

24.2. Semantics

24.3. Examples .

24.4. Applications .

Goto-Statements

25.1. Examples .

25.2. Syntax .

25.3. Semantics

25.4. Applications
25.5. Closed loops .
Procedure Statements I
26.1. Examples .

26.2. Syntax .

26.3. Semantics

Compound Statements and Blocks
27.1. Examples .

27.2. Syntax . .

27.3. Semantics of compound statementb
The If-Statement .

28.1. Examples .

28.2. Syntax .

28.3. Semantics

28.4. Applications

The If-Else-Statement .

29.1. Examples .

IX

52
52
53

54
54
54
54

56
56
56
57
58

59
59
59
59

60
60
61
61

62
62
62
62
62

62
62
63

64
65

65
65
66
68

68
68
69
70

71
71
72
73
74

76
76

Contents

20.2. Syntax .
29.3. Semantics
29.4. Efficiency consxderatlons

§ 30. The For-Statement .

§ 31.

§ 32.

§33.

§ 34.

§35.

§ 36.

30.1. Examples .

30.2. Syntax .

30.3. Semantics

30.4. For-statements and condltxonal sta,tements
30.5. Consequences drawn from the semantic rules
30.6. Efficiency considerations .

Chapter V
Miscellaneous Applications

Algebraic Problems .

31.1. Gauss elimination .
31.2. Newton’s method for a.lgebralc equa.txons .
31.3. The Dandelin-Graeffe method .

31.4. The stability criterion of Routh

Interpolation and Numerical Quadrature
32.1. Neville-Lagrange interpolation

32.2. Hermite interpolation with equidistant a.bsc1ssae .

32.3. Newton interpolation in an equidistant table
32.4. Romberg Quadrature

Numerical Integration of Differential Equations

33.1. Runge-Kutta method, Nystroem modification .
33.2. The Adams-Bashforth method .

33.3. Laplace’s equation . .

Least Square Problems

34.1. Orthogonalisation

34.2. Generation of orthogonal polynonuals
34.3. Chebychev series development .

Computations Related to Continued Fractions
35.1. Introduction .
35.2. Evaluation by the forward recurrence relatxon .

35.3. Transformation of a power series into a continued fra.ctlon .

35.4. The epsilon algorithm

Considerations Concerning Computer Limitations .
36.1. Quadratic equations . .

36.2. Newton’s method .
36.3. Monotonicity as a termination cntenon

36.4. Overflow in continued fraction evaluation
36.5. Underflow in orthonormalisation processes
36.6. Bandmatrices .

. Data Processing Applications .

37.1. Pseudostring representation .

37.2. Format handling

37.3. Sorting . . .
37.4. Differentiation of an anthmetlc expressmn
37.5. Operations performed upon packed data

77
79
81

83
83
84
85
88
89
92

95

97
98
99

. 100
. 100
. 102
. 103
. 104

. 106
. 106
. 107
. 109

. 111
111
. 113
. 114

. 116
. 116
. 117
. 118
. 120

. 122
. 123
. 124
. 125
. 126
. 128
. 129

. 132
. 132
. 134
. 135
. 137
. 141

§ 38.

§ 39.

§ 40.

§ 41.

§42.

§ 43.

§ 44.

§ 45.

§ 46.

Contents

Chapter VI
Declarations

Type Declarations

38.1. Examples .

38.2. Syntax .

38.3. Semantics

Array Declarations

39.1. Examples .

39.2. Syntax .

39.3. Semantics .
39.4. Unused components of an array .

Switch Declarations .

40.1. Examples .

40.2. Syntax .

40.3. Semantics .

40.4. Influence of scopes .
Procedure Declarations I

41.1. Examples .

41.2. Syntax .

41.3. Semantics

Semantics of Blocks .

42.1. Block structure

42.2. Scope of a quantity

42.3. Restrictions for declarations
42.4. Dynamic effects of declarations
42.5. Operands of a block

Entire Programs

43.1. Rules for ALcoL programs
43.2. Examples .

43.3. Block structure and storage economy .

Chapter VII
Procedures

Procedure Declarations IT

44.1. Introduction .

44.2. Operands of a procedure
44.3. Rules for global parameters .
44.4. Rules for formal parameters .

44.5. Scopes and procedure declarations .

44.6. The value part

44.7. Further examples of procedure decla.ratrons .

Procedure Statements II .
45.1. The actual-formal correspondence

45.2. Execution of a procedure statement
45.3. Restrictions for actual parameters . .
45.4. Additional rules for arrays, procedures, swrtches .

45.5. Gauss-Seidel effects

45.6. Further examples of procedure statements a.nd therr mterpretatron

Function Procedures and their Use
46.1. Function procedure declarations .

46.2. Further examples of function procedure decla.ratrons .

XI

. 145
. 145
. 145
. 146
. 146
. 146
. 147
. 147
. 149
. 150

. . 150
. 150
151
151
. 152
. 153
. 153
. 157
. 157
. 158
. 158
. 161
. 162
. 164
. 165
. 166
. 166
. 170

. 172
. 172
. 174
. 174
. 176
- 179
. . 180
. 181
. 184
. 185
. 185
. 189
. 190

192
194

. 196
- 197
. 198

XII

§47.

§ 48.

§ 49.

§ 50.

§ 51.

§ 52.

§ 53.

Contents

46.3. Rules for function designators . .
46.4. Evaluation of a function designator
46.5. The side effect question

Code Procedures

47.1. Independent procedures
47.2. Pseudodeclarations
47.3. Code procedures .

47.4. Economisation of ALGoL programs w1th ard of code procedures

Parameter Procedures . .

48.1. Examples involving arbrtrary functlonals .

48.2. Execution of parameter procedures .

48.3. Interference with the execution of a procedure

48.4. Some programming problems .

Chapter VIII
Input and Output

The Standard I/O-Procedures of ALGoL
49.1. Syntax . R
49.2. Semantics

49.3. Further remarks .

49.4. Control operations .

49.5. The I/O-procedures of § 43

Applications of Procedures insymbol, outsymbol .

50.1. Input and output of pseudostrings .
50.2 Punched card reading
50.3. Simulation of an output buffer

Use of inarray, outarray for Auxiliary Storage
51.1. Choleski decomposition of a large matrix
51.2. High order qd-algorithm

51.3. Matrix inversion by the escalator method .

Appendix A

The Jensen Device

52.1. The full name- concept
52.2. The Jensen device .
52.3. Bound variables

Conclusion . . .

53.1. Church’s]ambda. notatlon

53.2. The lambda notation for arrays

53.3. Syntax of the proposed extension

53.4. Semantics of the proposed extension .
53.5. Applications of the proposed extension .

Appendix B. The IFIP-Reports on ALGOL
Revised Report on the Algorithmic Language ALGOL 60

Report on SUBSET ALGOL 60 (IFIP)
Report on Input-Output Procedures for ALGoL 60

References
Subject Index .

. 200
. 201
. 202

. 205
. 205
. 205

. 207
210

. 212
. 213
. 215
. 218
. 224

. 227
.. 227
. 228
. 229
. 230
. 232

. 232
. 232
. 234
. 235
. 238
. 238
.24
. 244

. 248
. 248
. 249
. 253
. 254
. 254
. . 255
. 256
.. 287
. 258

. 262
. 303
. 309
. 314
. 317

Chapter I

Introduction

§ 1. The Concept of Automatic Programming

“Computing’’ means to derive, from certain given data, certain results
according to given rules. If a computation is done with a desk calculator,
one has the rules in mind and applies them as the computation proceeds,
taking the intermediate results into consideration. But if the computation
must be performed by an automatic computer, all actions to be taken
must be planned beforehand and described for the computer as a sequence
of instructions, and only then may the computation begin. The entire
sequence of instructions is called the machine program for that computa-
tion, whereas the term programming pertains to the preparation of the
program.

In the early days of automatic computing, programming was con-
sidered as some kind of art, since, indeed, special skill was required to
describe the entire computation in advance in a rather queer notation.
With the advent of faster computers, however, the need for writing a
program for every problem very soon became a nightmare and left no
room for artistic feelings. The situation required immediate action in
order to reduce the terrible burden. The relief came through the computers
themselves: if computers were able to carry such a heavy load of comput-
ing, which before had taken years on a desk calculator, they certainly
could also assist in writing programs.

Indeed they could; it turned out that it was possible to write programs
in a notation somewhere ‘‘between’’ machine code and standard mathe-
matical notation, which was then translated into correct machine code
by the computer itself with the aid of a special translation program
(usually called compiler). Any practice which thus relieves the program-
mer from writing in machine code is called awtomatic programming.
Started around 1950, mainly by M. V. WiLKES in England and G. HOPPER
in the USA, automatic programming has meanwhile grown into an
important branch of computing science, and today a multitude of auto-
matic programming systems are in use which differ widely in scope and
efficiency.

1 Rutishauser, Description of ALGOL 60

2 I. Introduction

The automatic programming systems intended for numerical problems
(these are the only ones we are considering here) can be classified into
three fairly well separated levels:

a) External machine code

If the instructions which appear inside the computer as strings of
digits can be written outside with a mnemonic operation symbol and a
decimal address, we call this an external machine code. This is a rather
trivial level of automatic programming since the correspondence between
the elementary commands in internal and external machine code is
practically one to one. Accordingly, the translation process is also ex-
tremely simple and sometimes even done by hardware.

b) Assembly languages

Notations of this class are similar to machine code insofar as they
also use single, sequentially executed commands of a specified format.
However, the addresses of operands and destinations of jumps can be
denoted by algebraic symbols which may be suffixed (this for referring
to components of vectors). Such methods of automatic programming
simplify programming considerably, but on the other hand, the trans-
lation into machine code is already fairly complicated since it requires
among other things the allocation of addresses.

c) Algorithmic languages

This class contains automatic programming systems which use stan-
dard mathematical notation for describing arithmetic operations; in ad-
dition it includes certain dynamic elements for describing the flow of a
computation. For such languages the programming reduces essentially
to writing down the formulae that govern the computation. Since this
must be done anyhow, no further reduction can be expected with respect
to arithmetics, but great variations in elegance, power and usefulness
are still possible within this class by virtue of nonarithmetic features.
Quite naturally the translation of an algorithmic language into machine
code is extremely complicated, and, accordingly, the corresponding com-
pilers require large storage capacities.

In order to exemplify the three classes of automatic programming
systems, we describe here the same piece of computation in the internal
and external machine code of ERMETH, in the assembly language
CODAP for the CDC 1604 A, and in the algorithmic language ALGoOL.
It should be clear, however, that the merits of the various systems could
be brought to light only by examples including loops and subroutine calls.

§1. The Concept of Automatic Programming 3

ArcoL Internal machine code
of ERMETH .2

a[101] := (a[0]+7) 1 2; 01 1 0000 02 0 0004

a[1] :=sqgrt(1+a101]); 19 0 8980 04 0 8980

if c[— 2] <0 then goto label[150]; 19 1 0101 02 0 9001

goto label[75]; 21 0 9900 00 0 0000
19 1 0001 01 3 9998
22 9 0075 21 9 0150

External machine code

of ERMETH .2 CODAP3

A 1,0 1LDA A

+ 4 FAD J

S 8980 STA TEMP

X 8980 FMU TEMP

S 1,101 STA A+101

4+ 9001 FAD ONE

C 9900 STA TEMP

S 11 ENA TEMP

A 3,9998 RT]J SQRTF

C+ 975 RT]J ERROR

C 9,150 STA A1
LDA C—2

AJP M LABEL+150
AJP P LABEL+75

1 The electronic computer ERMETH was constructed 1953—1956 under the
direction of Prof. E. STIEFEL and Prof. A. P. SPEISER in the Department of Applied
Mathematics (Swiss Federal Institute of Technology, Ziirich). The ERMETH was
in operation from 1956 until 1963; since 1960 it had an ArcoL compiler designed
by Dr. H. R. ScHWARZ.

2 The external and internal operation symbols of the ERMETH are: A|01:
clear and add; S|19: store; +|02: floating add; X |04: floating multiply; C|21:
jump; C+|22: jump if positive. The digits following the operation symbol denote
index (B-line) and address (these two are separated by a comma in the external
notation). At 9900 begins the square root routine (with automatic return), and
9001 contains the floating point constant 1. It is assumed that the addresses of
a[0], ¢[0] and label [0] are stored in index registers 1, 3, 9 respectively, and that j
is stored in storage position 4. For more details on ERMETH see J. R. Stock [36].

3 The operation symbols of CODAP [1I] are: LDA: clear and add; FAD:
floating add; FMU: floating multiply; STA: store; RT]: jump with automatic
return; ENA: enter address of operand for the subsequent function call; AJP:
conditional jump (P if positive, M if negative).

1*

4 I. Introduction

§ 2. Historical Remarks on Algorithmic Languages

The very first attempt to devise an algorithmic language was under-
taken in 1948 by K. ZUsE [45]. His notation was quite general, but the
proposal never attained the consideration it deserved.

In 1951 the present author tried to show that in principle a general
purpose computer could translate an algorithmic language into machine
code!. However, the algorithmic language proposed in this paper was
quite restricted; it allowed only evaluation of simple formulae and auto-
maticloop control (it contained essentially the for-statement of ALGOL 60).
Besides that, the translation method was intermixed with the idea of a
stretched program, which at that time certainly had some merit as a time-
saving device (see [27]) but was not essential for the purpose to be
achieved. For these and other reasons this paper did not receive much
attention either.

In 19542 CorraDO BoeBM [10] published a method to translate al-
gebraic formulae into computer notation. He considered neither sub-
scripted variables nor loop control, but his method to break up formulae
into machine instructions was at this stage a noteworthy step towards
the pushdown methods described by SAMELSON and BAUER in [32, 33].
Further early attempts to translate mathematical formulae into machine
code were made in 1952 by A. E. GLENNIE [15] in England and in 1953
by A. A. LiapuNov?® in Russia.

Thus by 1954 the idea of using the computer for assisting the pro-
grammer had been seriously considered in Europe, but apparently none
of these early algorithmic languages was ever put to actual use.

The situation was quite different in the USA, where an assembly
language epoch preceded the introduction of algorithmic languages. To
some extent this may have diverted attention and energy from the
latter, but on the other hand it helped to make automatic programming
popular in the USA. Thus, when in 1954 LANING und ZIERLER [I] pre-
sented their algorithmic language — the first one ever actually used —
and shortly thereafter the IBM FORTRAN System [19] was announced,
the scientific world was prepared for this new concept.

Meanwhile at Darmstadt an international symposium on automatic
computing was held in Oct., 19554, where, among other things, algorith-
mic languages and their translation into machine code were also dis-
cussed. Several speakers stressed the need for focusing attention on

1 Lecture at the GAMM (Gesellschaft fiir angewandte Mathematik und Mecha-
nik) meeting, Freiburg i. Br. March 28 —31, 1951. Published in [26].

2 The paper [10] was officially presented at the ETH on July 10, 1952, as a
thesis.

3 Cited in the introduction to Ersnov [13].

4 The proceedings of this meeting are collected in [18].

§3. The ArcoL Conferences of 1958, 1960, 1962 5

unification, that is, on one universal, machine-independent algorithmic
language to be used by all, rather than to devise several such languages
in competition. This became the guiding idea of a working group called
the GAMM Subcommittee for Programming Languages, which was set up
after the Darmstadt meeting in order to design such a universal algorith-
mic language.

This subcommittee had nearly completed its detailed work in the
autumn of 1957, when its members, aware of the many algorithmic
languages already in existence, concluded that, rather than present still
another such language, they should make an effort towards worldwide
unification. Consequently, they suggested to Prof. J. W. CArg, then
president of the ACM (Association for Computing Machinery), that a
joint conference of representatives of the ACM and the GAMM be held
in order to fix upon a common algorithmic language. This proposal
received vivid interest by the ACM. Indeed, at a conference attended
by representatives of the USE, SHARE and DUO organisations and of
the ACM, the conferees had likewise felt that a universal algorithmic
language would be very desirable. As a result of this conference, the
ACM formed a committee which also worked out a proposal for such a
language.

§ 3. The ArcoL Conferences of 1958, 1960, 1962

At that point, direct contact between the GAMM subcommittee and
the ACM committee was established through F. L. BAUER in April, 1958,
when he presented the GAMM proposal at a Philadelphia meeting of the
ACM group. A comparison of the proposals of the ACM and the GAMM
indicated many common features. The ACM proposal was based on ex-
perience with several successful algorithmic languages. On the other
hand, the GAMM subcommittee had worked for a much longer time at
their proposal and had from the very beginning the universality of the
language in mind.

3.1. ALcoL 58

Both the GAMM and ACM representatives felt that, because of the
similarities of their proposals, there was an excellent opportunity for
arriving at a unified language. They felt that a joint working session
would be very profitable and accordingly arranged for a conference to
be attended by four members of the ACM committee and four members
of the GAMM subcommittee.

The meeting was held at Zurich, Switzerland, from May 27 until
June 2, 1958, and was attended by F.L. BAUER, H. BOTTENBRUCH,
H. RutisHAUSER and K. SAMELSON of the GAMM subcommittee and by

6 I. Introduction

J. Backus, C. Kartz, A. J. PErLIS and J. H. WEGSTEIN of the ACM com-
mitteel. It was agreed that the contents of the two proposals should
form the agenda of the meeting and the following objectives were agreed
upon:

a) The new language should be as close as possible to standard
mathematical notation and be readable with little further explanation.

b) It should be possible to use it for the description of numerical
processes in publications.

c) The new language should be readily translatable into machine
code by the machine itself.

At this conference it was soon felt that the discrepancies between
the notations used in publications on the one hand and the characters
available on input/output mechanisms for computers on the other hand
were a serious hindrance and might virtually prevent agreement upon a
universal algorithmic language. It was therefore decided to disregard
printing usage and properties of input/output mechanisms and to focus
attention upon an abstract representation (in the sense of a defining
standard), called a reference language, from which appropriate publication
and hardware languages might be derived later as isomorphic descendants
of the reference language?. The notion was, therefore, that reference,
publication and hardware languages should be three levels of one and
the same language; the conference, however, would then discuss only
the reference language. Accordingly, the algorithmic language ALGoL,
which was agreed upon at this conference and published in the ALGoL
report [5], is defined only on the reference level.

After publication of the ALGOL report [§] much interest in the lan-
guage ArcoL developed. At the initiative of P. NAUR an ALGoL Bulletin
[2] was issued which served as a forum for discussing properties of the
language and for propagating its use. The Communications of the ACM
introduced an algorithm-section, in which numerical processes are de-
scribed in terms of ALGoL. Elsewhere ALGOL was also used more and
more for describing computing processes.

1In addition to the members of the conference, the following persons parti-
cipated in the preparatory work of the committees: GAMM: P. GRAEFF, P. LAucH-
L1, M. PauL, F. PEnzLiN; ACM: D. ARDEN, J. McCarTHY, R. RicH, R. GoopMAN,
W. Turanski, S. Rosen, P. DesiLers, S. Gorn, H. Huskey, A.OrbeN, D.C.
Evans.

2 For the relation between reference, publication and hardware language see [§].
It should be recognized that experience has shown that ALGOL programs may well
be published in the reference language, and therefore extra publication languages
are in fact unnecessary. On the other hand, hardware languages have proved
necessary to such an extent that it was decided to standardize a few carefully
selected hardware representations of the ALGoL symbols (cf. section 7.4).

§3. The ArcoL Conferences of 1958, 1960, 1962 7

On the other hand it was soon found that certain definitions
given in the ALGOL-58 report were either incomplete or even contra-
dictory or otherwise unsatisfactory for the description of numerical pro-
cesses. As a consequence many proposals were made to remove these
defects?.

3.2. ArcoL 60

In view of the constructive criticism that evolved and the proposals
made, it was decided that another international ALGoL conference should
take place. Accordingly, the GAMM subcommittee organized a prelim-
inary meeting at Paris in Nov. of 1959, attended by about 50 participants
from Western Europe, from which 7 delegates for the final ArLcoL
conference were selected. The ACM committee likewise selected 7 dele-
gates at a preparatory meeting held in Washington D.C. at the same
time. Both the European and the USA delegation made proposals for
removing the inconsistencies from the ALGOL report and also for making
changes in the language. These proposals took the criticisms as much as
possible into consideration.

The conference, held at Paris, Jan. 11—16, 1960, was attended by
J. W. Backus, F. L. BAUER, J. GREEN, C. KaTz, J. MCCARTHY, P. NAUR,
A.J. PerL1s, H. RUTISHAUSER, K. SAMELSON, B. Vauquois, J. H. WEG-
STEIN, A. V. WIJNGAARDEN, M. WooDGER? The proposals worked out
prior to the conference again formed the agenda of the meeting, but in
addition the conferees had at their disposal a completely new draft
report prepared by P. NAUR, which served as a basis for discussion during
the conference.

From the beginning it was obvious that rather than just adding a few
corrections to ALGOL 58, it was necessary to redesign the language from
the bottom up. This was done, and accordingly ALGoL 60, as the language
emerging from the Paris conference is officially called, was in many
respects entirely different from ArGoL 58. It is defined on the reference
level in the ALGOL-60 report [6] edited by P. NAUR. Since publication
of this report, ALGOL 58 has become obsolete, but many of its features
have been carried over into other algorithmic languages.

3.3. The Rome amendments of 1962

Soon after the ALGOL-60 conference a number of inconsistencies were
again found in the new ALGOL report. Most of them were just mistakes,
but others led to discussions which revealed a considerable conceptual

1 Most of these proposals have been published in the Comm. of the ACM, Vol. 2
(1959) and/or in the ALgoL Bulletin Nr. 7.

2 W. Turanskr of the American delegation was fatally injured in an auto-
mobile accident just prior to the Paris conference.

8 I. Introduction

divergence among the experts, and it proved impossible to bridge the
gap between the opposite interpretations of the ALcoL-60 report. It was
therefore decided to seize the opportunity when most of the members
of the ALGOL-60 conference would be attending an IFIP (International
Federation for Information Processing) meeting at Rome to discuss these
discrepancies. A formal ALGOL meeting, attended by F.L. BAUER, J.
GrEEN, C. Katz, P. NAUR, K. SaAMELSON, J. H. WEGSTEIN, A. v. WIN-
GAARDEN, M. WooDGER, R. KocoN, R. FranciorTi, P.Z. INGERMAN,
P. LanpIN, M. PauL, G. SEEGMUELLER, R. E. UTMAN and W.L.V.D.
PoeL was held on April 2—3, 1962, at Rome.

At this meeting the known mistakes and inconsistencies were cor-
rected as far as agreement could be obtained, and a corrected report,
called the Revised ALGOL Report [7] (in the following abbreviated RAR),
was issued under the auspices of the IFIP, which meanwhile had taken
over the responsibility for the further maintenance and development of
ALGoOL. At the same time a list of the corrections was published [40].

However, even the Revised ALGoL Report leaves the following ques-
tions still open:

a) Side effects of function designators.
b) The call by name-concept.

)
¢) Static or dynamic own-concept ?
d) Static or dynamic for-statement?
)

e) Conflicts between specifications and declarations.

§ 4. ArcoL Dialects and the IFIP Subset of ALcoL 60

Partly because of the uncertainty caused by the still unsettled issues
of ALGOL as mentioned in 3.3 above, partly because some of the more
sophisticated features of ALGOL 60 are hard to implement, only few (if
any) compiler makers have so far implemented (i.e. built compilers for)
the full language ALGOL 60. The worst effect of this is not that the lan-
guage cannot be fully used — in fact ALGOL offers still enough advantages
to make its implementation highly desirable — but that different imple-
mentors make different restrictions and thus create many dialects of
ALGoOL.

Usually such dialects exclude the use of the more sophisticated fea-
tures of ALGOL (recursive procedures, the own-device) besides restricting
the use of types (cf. 8.1). But only too often such dialects have been
“enriched” by non-ALGoL features such as the format declaration of
FORTRAN and the use of lists. As useful as such extensions may seem
for the individual user, the net effect is that they destroy the universality
of the language, and this is much worse than certain inconveniences in

§ 5. Preliminary Definition of ALcoL 9

the use of the present ALGOL. To correct this very unsatisfactory situa-
tion, it was concluded that, insofar as many implementors are virtually
forced to make restrictions, they should at least be urged to make iden-
tical restrictions and of course no extensions.

To achieve this, it was decided that the IFIP should issue an official
set of restrictions which define a true subset of ALGOL 60 as defined by
the RAR. This subset should be easier to implement and not contain
the controversial concepts but still be sufficient for most numerical
applications.

At a first meeting of the ALGOL working group of IFIP (W.G. 2.1),
held on August 28-30, 1962, in Munich, the then available subsets
SMALGOL [4] and ALCOR [9] were reviewed and the possibilities for
coalescing them were discussed. At further meetings of the W.G. 2.1
at Delft (Sept. 10—13, 1963) and Tutzing (March 16—20, 1964) the final
decision was made as to what features of ALGOL 60 should be excluded
from the official IFIP subset. Since then the IFIP council has approved
this decision and released a Subset Report [20] (in the following abbre-
viated as SR) which defines the official IFIP subset through restrictions
added to the full language as defined by the RAR. The official name of
this subset is SUBSET ALGOL 60.

This official subset excludes the controversial features of ALGOL 60
but is still sufficient for most numerical applications. It is contained in
most other subsets that have been created hitherto; accordingly, most
existing compilers can translate programs written in SUBSET ALGOL 60.
This is one of the reasons why this Handbook sticks to the subset:
Despite the nearly babylonic confusion with respect to the abilities and
restrictions of the presently existing ALGOL compilers, the programs
published in this Handbook will run successfully with most existing
ArcoL compilers without further adjustments. This, as we know, is far
from being true for ALGOL programs that make extensive use of the
more sophisticated features of ALGOL 60.

But there are also other reasons why we restrict ourselves to SUBSET
ALcoL 60: If one uses only this subset, one may design a special subset-
compiler, which, because it need not take care of the controversial con-
cepts of ALGOL, will require less storage space and produce more efficient
object programs.

§ 5. Preliminary Definition of ArcoL

The description of a complete calculation in terms of ALGOL is called
an ALGOL program. It consists of a sequence of statements and declara-
tions which are separated from each other by semicolons, the whole
being enclosed by begin and end. Upon execution of the ALGOL

10 I. Introduction

program, the statements call for certain well-defined actions, whereas
declarations serve merely to state the occurrence of certain quantities.

In this section we describe some of the features of ALcor, however
without being strict or complete.

5.1. Arithmetic expressions and assignhment statements
5.1.1. The elimination of the quadratic term from a cubic equation
x34ax24bx+c=0 is achieved by a substitution x=y — % which leads

to the equation y3+4 py -4 ¢g=0, where the new coefficients p, ¢ are given
as p=>b—a?[3, g=c—ab/3+243/27. In ALGOL the computation of p, ¢
for given values of a, b, ¢ is described as

pi=>b—at2/3;
g:=c—axb/3+2xat3/27;

This is not a complete ALGOL program but just a small section of one,
namely two assignment statements. They are executed in the order given
and thus produce the coefficients of the reduced equation. The action
to be taken by the corresponding object program in the computer is:
Take the values 4, b, ¢ from the respective storage positions, compute
and ¢ and store the resulting values in the positions reserved for $ and g.
5.1.2. The general idea of such an assignment statement is that the value
of the variable on the left side of the assignment symbol := is computed
as defined by the formula on the right side. Such formulae, in ALcoL
called arithmetic expressions, are written essentially in standard mathe-
matical notation (except that the multiplication symbol X may not be
omitted and that an exponentiation symbol 1 is used instead of raising
the exponent) and use the following elements:

a) Operation symbols + — X [1 and parentheses ().
b) Numerical constants, e.g.

131 0325 34.5678 135,,—12 9.87654,03,

with a decimal point (not a commal) as separator between integral and
fractional part, and (if needed) with a scaling factor expressed as a power
of ten (the symbol ,, indicates the beginning of the exponent part).

¢) Simple variables represented by arbitrary names like
x P Vs k1 apex 2r105 77777 alpha certif

which are strings of letters, possibly including decimal digits, but always
beginning with a letter. Such a variable represents the value that has
been assigned to it before.

§ 5. Preliminary Definition of ALcoL 11

d) Subscripted variables. In contrast to the usual subscript notation,
e.g. a;, b, 4, Ca j, dj,, subscripts are written in ALGOL on the normal line
level and enclosed in brackets. Accordingly the above examples — which
denote components of vectors, matrices, etc. — appear in ALGOL as

ali] b[k+1 c[2,7] d[[A]],
and v[k] := 0 is the ALGOL equivalent of setting the %-th component of

a vector 9 to zero.
e) Standard functions. The 9 names

sin cos sqrt Im exp arctan abs sign entier

refer to the so-called standard functions. As an example sin (x4 y) re-
presents the sine of ¥+ ¥, and entier (x/2) means the largest integer not
exceeding x/2.
5.1.3. Let us now give a few examples:

a) The length of a vector (x,, #,, ;) in 3-dimensional space is given
by the formula s=/x? + 22+ 2. In ALGOL s is computed by the assign-
ment statement

si=sgrt(x[1]42 + #2112 4 %[3]12)
b) The angle alpha of a triangle given with sides &, b, ¢ is defined as

tan(alj;ha>= (S—D)(s—b), where 2s=a +b +c.

s(s—a)
In ArGcoL we have to compute and assign s first (because only then

can its value be used) before evaluating the expression defined by the
given equation for alpha:

s:=(a+b+0)/2;
alpha := 114.5915 5903 X arctan (sqrt((s — c) X (s — b)[(s X (s — @))));

(alpha in hexagesimal degrees but with decimal fractions).

Thus it appears that ALGOL is somewhat less compact and elegant
than standard mathematical notation, but this is the price to be paid
in order that all symbols can be written straightforward on the normal
line level (which of course is an indispensable requirement for mechanical
reading devices).

c) Statements like

k:=k+1

are allowed in ArcoL. This statement increases the value of 2 by 1.
Indeed, it says that the value of % is taken, 1 added to it, and the result
is again assigned to k. Of course, the previous value of % is destroyed by
this operation.

12 1. Introduction

5.2. For-statements

If all components of a vector ¥ must be set to zero, the operation
v[k] := 0 must be performed once for every one of the values k=1, 2,
..., n. In ALcOL we have a shorthand notation for this:

for k:=1 step 1 until n do v[£]: =0

In fact, as the prefix for ... do says, it performs the statement v [£] :=0
» times with the prescribed values of %.

As a further example, consider the calculation of the length of a
vector ¥ in n-space. If » is variable, the expression v{+v3+ -+ + v}
cannot be transcribed directly into ALGoL but must be evaluated by a
summation loop: Let s=v}+v3+ --+ +v}_;, then the next partial sum
is obtained by adding v} to s, and this can be described in ALGOL as
s:= s+wv[k]12. To obtain the sum, we must simply repeat this opera-
tion for k=1, 2, ..., #, and start with s=0:

s:=0;
for 2:=1 step 1 until n do s:=s+v[k]}2;

The general rule is that a for-statement consists of a for-clause (the
part between for and do inclusive) followed by a statement. The for-
clause says how often and for what values of the controlled variable (this
is the variable following for) the statement should be executed.

It should be recognized, however, that the controlled variable need
not be a subscript (although it usually is) but can also take on non-
integer values. As an example, the following two statements compute the
sum of the values of the function ¢*/x at ¥=0.01, 0.02, ..., 10.00:

s:=0;
for x := 10 step —0.01 until 0.01 do s:= s+ exp(x)/x

Here we let x run backwards in order to reduce the influence of the
roundoff errors in the summation. But since now the controlled variable
is of real type, also its stepping causes rounding errors, which may lead
to incorrect termination of the loop (cf. 30.5.1).

5.3. Compound statements

If a more complicated computation, i.e. a sequence of statements
rather than a single statement, must be executed repeatedly, these state-
ments must be enclosed by begin and end?, and the for-clause must

1 Since the semicolons are not constituents of the single statements but rather
separators between them, no semicolon is required before the end.

§ 5. Preliminary Definition of ALcoL 13

be placed in front of the begin, e.g.

for k:=1 step 1 until n—1 do
begin

e[k]:= (e[k]/q[R]) Xq[k+1];

d?[k+1] = (qlk+1]—e[k]) e[k +1]
en

In fact, by embracing an arbitrary sequence of statements (these may
be all sorts of statements) by begin and end, a new kind of statement,
called compound statement, is created. Therefore, if such a compound
statement is preceded by a for-clause, it is by definition repeated as a
whole. Thus the above example has for n=4 the same effect as the
following sequence of statements:

e[1]:= (e[1] / ¢[1]) x¢[2];
q[2]:= (g[2]—e[1]) +el2];
e[2]:= (e[2]] ¢[2]) xq[3];

93] := (gB]—el2]) +e[3];
e[3]:= (e[3] [¢[3]) xq[4];
q[4]:= (¢[4]—e[3]) +e[4];

Likewise the multiplication of an # X#-matrix A= (a[¢, #]) with a

vector b= (b[7]), yielding a vector ¢ = (c[4]), is described by

for i:=1 step 1 until » do

begin
s:=0;
for k:=1 step 1 until n do s:= s+ a[7, k] xXb[k];
c[t]:=s

end

Indeed, every execution of the compound statement computes one, name-
ly the -th, component of the product vector.

5.4. Labels and goto-statements

Normally the statements of an ALGOL program are executed in the
order in which they are written. However, this order may be interrupted
by placing a goto-statement, e.g.

goto maior

at the place where the interruption should take place and a correspond-
ing label and colon,
Maior

14 I. Introduction

in front of the statement with which the computation should proceed
after the interruption.

Consider, for instance, the sequence of statements

entry: aux:= (a+0b)/2;
b:= sqrt(a Xb);
a:= aux;
goto entry

Assume now that execution of the program in which these statements
are embedded has proceeded to the label enfry. Then the next three
statements are executed, after which goto entry is encountered. This
has the effect that the computation begins again after the label entry,
from which it proceeds again downwards. Thus obviously those four
statements are executed over and over again with infinite repetition;
i.e. the computation is caught in a closed loop, from which it can be
freed only by intervention of the operator.

Such closed loops can be avoided by making jumps conditional, as
will be shown below in 5.5 and later in Chapter IV (in fact, goto-state-
ments are only useful in conjunction with conditional statements).

5.5. The if-statement

The execution of a statement can be made conditional by placing an
if-clause in front of it, e.g.

if x=0 then x:= ,,—20

This obviously means that x :==,;y— 20 is executed if and only if x was
exactly zero and may serve to avoid trouble in a later division. Likewise

if abs (a — b) >,,— 9 then goto entry

makes the jump to emtry subject to the condition |a—b| >,,—9 and
thus could be used to prevent the closed loop in the example given in
5.4 above.

If an if-clause is placed in front of a compound statement, then the
execution of the whole is subject to the condition stated in the if-clause.
As an example,

if abs (t) <in (14 theta) then
begin

y:=0;

for p:= m step —1 until 0 do y:= y Xt 4 c[p]
end

§ 5. Preliminary Definition of ALcoL 15

evaluates the polynomial cy—+¢ ¢4 cyt2+4 -+ +¢,¢" (and assigns the
result to y) if and only if |#| <in(14-theta).

In the general case, an if-clause may be placed in front of any state-
ment which is not alveady an if-statement. In other words, the construction
if x=0 then if z2>sin(y) then ... is forbidden. However, it is also un-
needed since ALGOL permits achieving the intended effect by conjunction
of the two conditions:

if x=0Az2>sin(y) then ...

This if-clause means that the statement following then is executed if
and only if botk conditions x=0 and z>>sin(y) hold (compare, however,
28.4.3).

5.6. If-else-statements

Sometimes one wants to extend the if-statement by saying also what
should be done if the condition stated in the if-clause does #not hold.
To achieve this, we do not end the if-statement with a semicolon or end
but with a symbol else, and then append another statement, e.g.

ifp>gthenf:=pelsef:=gq

In such a case, always one of the two statements is executed, namely
the first if the condition holds, the second if the condition does not hold.
Thus the above statement assigns the larger of the two values $, g to
the variable f.

In the general case, the if-else-statement may have the form
if C then U else S

where C denotes a condition, U any statement not beginning with if or
for, and S any statement whatsoever.

An application of this possibility is shown by the following piece of
program which describes the computation of the largest real root of a
cubic equation x*+ax2+4bx+c=0. It should be recognized, however,
that this is still not a complete program since it contains neither de-
clarations nor input- and output-operations:

begin
pi=b—at23;
g:=c—axbl3+2xat3/27;
dise = (g/2) 12+ (5/3)13;
ifg=0Ap>0then x:= —a/3
else
if g=0Ap=<0 then x:= — a3+ sqrt(—p) second alternative

first alternative of an
if-else-statement

16 I. Introduction

else
if disc>0 then
begin
u 1= sqrt(disc) + abs(q/2); third
v:=u10.3333333333333; alternative
x 1= —af3—(v—p/(3 Xv)) Xs1gn(g)
end
else
begin
phi := arctan (2 X sqrt (— disc)|q) ;
if g>0 then phi := phi —3.14159265 3589 79; fourth
x 1= —al3+2 Xsqrt(abs(p[3)) X cos (phi]3) alternative
end
end

It should be recognized that in a case like p=1, g=0, where the
conditions for both the first and third alternative hold, by definition
only the first alternative is actually executed.

5.7. Declarations

A full ALGoOL program is essentially a sequence of statements which
are separated from each other by semicolons, the whole being enclosed
by begin and end. In addition, however, the sequence must contain
declarations between the first begin and the first statement of the
program; these serve to state certain properties of the variables (and
other quantities) occurring in the program. Example:

begin
real x, y, ¢, pz, gyrosc;
integer 7,7, &;
array a[1:9], 5, ¢, 4[0:5], , v[1:20,1:30];
integer array /, g[—1:6];
x:= —1.5; statements of
. } the program

declarations

end

In this program, the declarations at the beginning state that the real
(floating point) variables x, ¥, £, pz and gyrosc and the integer-valued
(fixed point) variables 7,7, & will occur. In addition, the arrays a,b,¢,4, 1,8
with one subscript (vectors) and the arrays #, v with two subscripts
(matrices) are declared and can therefore be used in the program. The
numbers in the brackets denote the lower and upper bounds for the
subscripts of these arrays, e.g. the first subscript of the arrays «, v can
run from 1 to 20, the second from 1 to 30.

§ 5. Preliminary Definition of ALcoL 17

These declarations do not necessarily mean that all the declared
variables actually occur in the program or that all components of the
declared arrays must actually be used. But a variable which has not
been declared cannot be used, and a component of an array whose sub-
script is beyond the declared limits cannot be used.

To be precise, declarations can appear not only after the first begin
of a program, but also after a later begin (this introduces the block-
concept, for which see §42). In an array declaration following a later
begin the subscript bounds may depend on calculated values, e.g.

begin
integer n, m, p;
n 1= entier (sqrt (1 -+ exp (6)));
begin
array a{1:n, 1:n];

5.8. Complete programs

An ALGoL program cannot be complete unless it also contains state-
ments which perform the transfer of initial data and results of a com-
putation from and to the outside world. In ALGOL such ¢nput- and output-
operations may be performed via the standard I|O-procedures (for the
details of which see Chapter VIII). For the moment let us see how the
cubic-equation program of 5.6 may be completed by adding the necessary
declarations and I/O-operations:

begin
real a,b, ¢, p, q, u, v, phi, disc, x ;
ZZ:ZE g’ Z; ’ input of the coefficients a, b, ¢
. T via channel 1.
inreal (1,¢) ;

}Insert here the piece of
program given in 5.6

outreal (2, x) output of x via channel 2
end

2 Rutishauser, Description of ALGoL 60

Chapter II
Basic Concepts

The definition of a programming language consists of several parts,
namely

a) The definition of the basic symbols, which are the atoms of the
language.

b) The syntax (or syntactic rules); these are the rules which define
how the basic symbols can be concatenated to larger units (in the follow-
ing called symiactic objects) and finally to complete ALGOL programs.

c) The semantics (or semantic rules), i.e. the rules which define what
actions a given ALGOL program (or section hereof) should initiate at
execution time.

In the following a semiformal definition of the language SUBSET
ALGOL 60! on the reference level is given together with examples which
show the properties and possibilities of the language. Since the sub-
sequent text deals exclusively with SuBseT ALGoL 60, the word ALGOL
will from now on automatically pertain to this subset, while the term
full ALcoL will be used where, as an exception, reference to the language
defined by the RAR must be made.

§ 6. Auxiliary Conventions

6.1. Syntactic forms

A new class I of syntactic objects will be introduced by its syntactic
form, which is a sequence of basic symbols and/or capital letters2. The
syntactic form defines the general element of a new class of syntactic
objects as follows: Basic symbols represent themselves, but a capital
letter stands for an arbitrary element of the respective class of syntactic
objects. Where the new class is defined by several syntactic forms
2y, 2,, ..., it is the union of all subclasses defined by each of the X,.

Take for instance the syntactic form I[E], where I denotes the class
“identifier’” and E the class “arithmetic expression”. Obviously this
defines a class of syntactic objects which consist of an identifier followed

1 The official definition of this subset is given only by the two reports RAR
and SR together.

2 According to the SR (section 2.1) the capital letters are not basic symbols
of SUBSET ALGoL 60 and are therefore available for this purpose.

§6. Auxiliary Conventions 19

by an arithmetic expression in brackets (subscripted variables with one
subscript), e.g.

delo k], mertt[x+1], ceit[(k+1) X &/[2], afas]].

6.2. French quotes

In order to distinguish between ordinary text and ALGOL text, ALGOL
programs and parts thereof (down to basic symbols) as well as syntactic
forms will from now on be enclosed by French quotes « »:

«goto entry», «p», saux = (a-+0b)[2», «I[E]».

It should be clear, however, that this is by no means a rule of ALGoL
but only an ad hoc construction for avoiding confusion.

6.3. The ellipsis

The ellipsis ... will be used in syntactic forms in the sense of obvious
continuation in order to indicate that certain parts of the syntactic form
occur with an unspecified number of repetitions, including the degenerate
case where the number of repetitions is only one. Accordingly a con-
struction such as

«I[E,E,...,E]»

represents the union of all syntactic forms

«I[E]», «I[E, E]», «I[E,E, E]», «I[E,E,E,E]», etc.

6.4. The syntactic diagram?!

Besides the means described above, new syntactic objects will also
be defined more precisely by syntactic diagrams. The class of objects to
be defined is designated by its name in a bold frame, and the arbitrary
element of this class is obtained by running from the origin o in an
arbitrary way along the arrows to the bold frame, whereby the basic
symbols found in the circles and rounded boxes and arbitrary elements
of the classes listed in the rectangular boxes are collected and aligned in
the order in which they are met. As an example

/dentifier [y - - svbscripfed
S R) C | arithmelic expression (¢c£19.6)]—————-@—»— Jariable

()
(N
Fig. 1

1 Dipl. Ing. A. Scual, Director of the Computing Center of the ETH, Zurich,
proposed this hitherto unpublished modification of the Burroughs Syntactical Chart
(cf. Comm. ACM, Sept. 1961, pp. 393).

2%

20 11. Basic Concepts

defines a new class of syntactic objects which consist of an identifier
followed by an arbitrary number of arithmetic expressions which are
separated by commas and enclosed in brackets. It defines therefore the
same class as the syntactic form «I[E, E, ..., E]», namely the class
“subscripted variable”’.

6.5. Undefined situations

The semantic rules sometimes state that the outcome of a certain
operation or the effect of executing a certain piece of ALGOL program
is undefined. This simply means that whenever such a situation is en-
countered in a computation, the further execution of the program is
unpredictable and in fact may produce any effect a computer is capable
of. Such a piece of program is therefore incorrect.

On the other hand, it is not necessarily an error if an ALGoL program
produces an undefined value during its execution, provided this value is
not further used by the program.

§ 7. The Basic Symbols of ArLcoL

7.1. Set of basic symbols
The set of basic symbols of ALGOL contains?:
a) All small leffers of the Roman alphabet:

«a», «brn, «cn, «d», «e», «f», «g», «hy, €y, «J», «k», Iy, «m», «n», 0y,
PN, «gn, «ry, «SH, (¥, CU», CUY, CWH, CXN, (YN, €ZH

} The decimal digits «0», «1», «2», €3, «4», «5», «O», «7», «8», «9».

K=

The logical constants «truey and «falsey.

[=F

) The arithmetic operators «+», «—», «X», «[», «}».
) The relational operators «=», «3=n, «<», ¢>», ¢=», «=n

- D

The logical operators « —», «A», «V», «D», «=».

g) The sequential operators «goton, «if», «theny, «else», «for», «do».

h) The separators «,», «.», ¢1p», €9, €;», «:=», «u», «step», «untily,
«while», «comment».

i) The brackets «(», «}», «[», «]», «'», ¢’», «begin», «end».

i) The declarators «real», «integer», «Booleany, «arrayy,
«switch», «procedures.

k) The specificators «label», «string», «value».

1 According to the SR, the symbols =, own and all capital letters are not basic
symbols of the subset.

§ 7. The Basic Symbols of ArLgoL 21

7.2. Delimiters

The elements of groups d) through k) are usually called delimiters,
the others are non-delimiters. In addition, some of the basic symbols
have individual names:

/ slash or solidus = assignment symbol
, comma U space symbol (this is
period used only in strings).
10 base tent () parentheses
colon [] brackets
; semicolon £ string quotes .

The 23 underlined 2 English words among the basic symbols are
called word-symbols. They have been incorporated into the language
because it was felt that the readability of ALGOL programs would be
improved if for certain nonarithmetic operations such word-symbols
expressing the action to be performed were chosen instead of unusual
symbols like X &, etc. It should be recognized, however, that under-
lining expresses the fact that the word-symbols are afoms of the language
like other basic symbols and therefore can be neither decomposed nor
translated into other national languages.

7.3. Typography

Where an ALGOL program is written on paper, it is understood that
the order of the basic symbols in the ALGOL text is the same as the
conventional order of letters in the plain English text. However, blank
space3, change to a new line and indenting of the latter have no signi-
ficance in ALGOL. These devices are syntactically nonexistent in ALGoL
and can therefore be used freely to improve the readability of ALgoL
programs without changing their effect. Extensive use of this possibility
has been made in this volume.

7.4. Hardware representations

Few 1/O-devices for electronic computers accept all basic symbols of
ALcoL as given in 7.1 above. Most users of ALGOL are therefore forced
to take recourse to so-called hardware representations for entering
ALgoL programs into the computer. This means that they must replace
the nonavailable symbols occurring in ALGOL text with suitable com-

1 In order to distinguish it from the number «10», the base fexn should be written
below the line level.

2 Because of the difficulty of achieving underlining in printed text, bold face
(grotesque type) is used throughout this volume instead of underlining.

3 It should be recognized that the space symbol «wu» used in strings is considered
different from a unit of blank space; indeed the former has a very definite meaning.

22 II. Basic Concepts

binations of other symbols, but of course only such combinations can

be used which cannot occur otherwise in an ALGOL program. Examples:

:= It is general practice to represent this symbol by a colon, followed
by an equality symbol.

[For I/O by punched cards this symbol is usually represented by
the combination (/.

< In the Bull Gamma 60 computer represented by <=.

The word-symbols are also a problem, since underlining is usually
not possible with I/O-mechanisms. To resolve this difficulty, a specific
symbol not contained in the set of basic symbols (e.g. the apostrophe
or $) is chosen as an escape symbol with the convention that any word
enclosed between a pair of escape symbols is considered as underlined.
Thus «begin», «procedure»may berepresented by 'begin', § procedure $.

The escape symbol is also used for representing other non-available
symbols, e.g. 'less' as representative of «<<».

The following hardware representations (for punched cards and 5-
channel paper tape) have been accepted as a DIN standard [12]. The
table given indicates for every basic symbol of SUBSET ALGOL 60 either
the punching combination for cards and tapes, or else the character
combination used to circumscribe the basic symbol. For punched cards
the conventional enumeration of the punched card rows, i.e. 12-11-0-1—
2-3-4-5-6~7-8-9 applies, while for paper tape the 5 channels are enu-
merated 1-2-3-4-5, with the sprocket hole between channels 2 and 3.
Note that paper tape has the peculiarity that the same punching com-
bination may denote two different symbols, depending upon whether
the mechanism is on letter-shift (BU) or figure-shift (ZI). Two extra
punch combinations are reserved for changing the shift.

a) Symbols which can be punched directly.

Symbol Tape (ZI) Punched cards Symbol Tape (ZI) Punched cards
0 2-3-5 0 — 1-2 11

1 1-2-3-5 1 X 1-4-5 11-4-8
2 1-2-5 2 / 1-3—4—5§ 0—1

3 1 3 34 0-3-8
4 2-4 4 (1-2-3-4 0-4-8

5 5 5) 2-5 12-4-8
6 1_3—5 6 10 3"5

7 1-2-3 7 : 2-3-4

8 2-3 8 1-2-4

9 4-5 9 [1-3-4

= 2-3-4-51 3-8!] 2-4-5

. 3—4-5 12-3-8 ' 1-32 4-82

+ 1-5 12

1 = is used only as constituent of the assignment symbol «:=».
2 ' (apostrophe), used as escape symbol.

§7. The Basic Symbols of ALGoL 23

Symbol Tape (BU) Punched Symbol Tape (BU) Punched
cards cards
a 1-2 12—-1 7 34 11-5
b 1—4-5 12-2 4 4-5 11-6
c 2-3-4 12-3 P 2-3-5 11-7
d 1-4 12-4 q 1-2-3-5 11-8
e 1 12-5 4 24 11-9
f 1-3—4 12-6 s 1-3 0-2
g 2—-4-5 12-7 t 5 0-3
h 3-5 12-8 u 1-2-3 04
i 2-3 12-9 v 2—-3-4~5 0-5
7 1-2-4 11—1 w 1-2-5 0-6
3 1-2-3-4 11-2 ¥ 1-3-4-5 0-7
l 2-5 11-3 y 1-3-5 0-8
m 3~4-5 11-4 z 1-5 0-9
b) Auxiliary symbols for 5-channel tape.

Symbol Punch comb. Meaning

WR 4 carriage return

ZL 2 line shift

ZWR 3 space

ZI 1-2—4-5 figure shift

BU 1—2-3-4~5§ letter shift

c) Symbols represented by combinations of other symbols:

Representation on

Symbol
tape

punched cards

Symbol

Representation on
tape and punched cards

10

:~
N 2
2=
~

D
| ==

o~ =

lank)

U <>]4#1IININVA

'power'
'less'
'greater’
'not greater'
'not less'
'equal’
'not equal’
'not'

‘and'

Ior]

'impl"'
'equiv’

d) The 23 word-symbols are all represented by enclosing the words
in apostrophes instead of underlining them, i.e. «begin» is represented
by 'begin’', «procedure» by 'procedure’, etc.

24 II. Basic Concepts

§ 8. Values

Upon execution of an ALGOL program, certain well-defined actions
take place, the most frequent one being that operations are performed
upon certain values, whereby other values are produced. These are again
involved in operations, etc., until the «end» of the program is reached.
All other operations serve solely to assist in these calculations.

8.1. Types of values

The values upon which an ALGOL-program can operate fall into three
classes?:

a) The values of type real?, i.e. the class of real values.

b) The values of type integer, i.e. the class of all integers.

c) The values of type Boolean (the logical values true and false).

Concerning the integers, it should be recognized that the same in-
teger value can either be of integer or real type, depending on how it
was generated. Which of the two cases actually occurs in a given situa-
tion, is defined by rules of type at appropriate places in the following
chapters. The distinction between real and integer type is important,
since in critical cases the results of a computation may depend on it.

8.2. Computer limitations

In actual computing, values of real and integer type must be re-
presented by digital numbers (usually real type values by floating point
numbers, integer type values by fixed point numbers). Consequently,
such values are subject to computer limitations, i.e. they can be re-
presented only if they remain between certain bounds, and values of
type real can be represented at best only approximately. Since these
are facts that we could not hope to alter, it was indispensable that they
somehow be built into the framework of the language ALgoL, otherwise
we would have been being utterly unrealistic. As a consequence the
following rules have been accepted:

a) A value of type real is considered as inherently inaccurate, i.e.
as being defined only with finite precision, and arithmetic operations
performed with them must be assumed to be affected by (usually small)
roundoff-errors.

b) Values of both types real and integer can be represented only
if they remain within certain (computer-dependent) bounds, and it must

1 Despite the wording used in the RAR, labels are not values in this sense.
Accordingly, we use here — without changing the content — a different wording
which does not give labels the status of values.

2 Tt has become customary to say the value x is of type T instead of the value x
belongs to class T.

§9. Quantities and their Names 25

be taken into account that the further course of the calculation is un-
defined as soon as a value exceeds its respective bounds (so-called over-
flow).

¢} On the other hand, it is assumed that arithmetic operations per-
formed with values of type integer are carried out exactly, provided
the result is again of type integer and remains within the prescribed
bounds.

8.3. Consequences of computer limitations

According to what has been said above, it must be tolerated that an
ALrcoL program may produce results which deviate from the expected
theoretical values, or that its execution may be discontinued because of
overflow!. Even worse, the same ALGOL program will usually produce
different results with different computers, or cause overflow on com-
puter A but not on computer B.

This seems a hopeless situation, and ALGOL does not give the slightest
hope for overcoming these difficulties. On the contrary, it is entirely up
to the numerical analyst to design an ALGOL program such that it pro-
duces useful results on any computer despite the above-mentioned short-
comings. But how this should be achieved is not a question of ALcoL
and therefore is not treated here, except that we shall indicate in some
of the programming examples what can be done to overcome the dif-
ficulties associated with computer limitations (cf. § 36).

§ 9. Quantities and their Names

Whenever a programmer describes a computation in terms of Arcor,
he automatically introduces certain quantities which are abstract objects
distinguished by their names. They serve to facilitate the description of
the program but obtain their meaning through the program itself (in
actual computation, these quantities are realized as storage positions or
groups of storage positions).

9.1. Kinds of quantities

The following quantities are used in ALGOL:

9.1.1. A simple variable is an object to which a value may be assigned
and then remains associated with it until a further assignment to the
same variable.

1 It should be recognized that some of the programs published in this Handbook
presume that in case of underflow (i.e. the exponent of a floating point number
exceeds its lower bound) at worst the machine representation of *“floating zero”’ is
produced. Several of these programs will not work properly with computers that
produce arbitrary effects upon underflow.

26 I1. Basic Concepts

9.1.2. An array is a set of elements, called the components of the array,
every one of which behaves like a simple variable. The components of
an array are distinguished by a set of p integers (subscripts) 7, 75, ..., %,
where p is called the dimension of the array. If we interpret the sub-
scripts as coordinates in a p-dimensional space, then the entire array
corresponds to the total of all unit-gridpointsin a p-dimensional hyperbox

LE4,<u, (k=1,2,...,9),
whose boundaries (i.e. the array bounds Iy, 1,, ..., 1,, uy, uy, ..., u,) are
given in the corresponding array declaration (cf. § 39).

9.1.3. A label is a designation given to a specific spot in an ALGoL
program.

9.1.4. A swifch is a one-to-one correspondence between an ordered set
of n labels and the integers 1, 2, ..., n.

9.1.5. A procedure is an operator which can operate upon other quantities
(e.g. compute certain results from given arguments). However, the prop-
erties of procedures can differ markedly from the properties of mathe-
matical functions and operators; in fact, procedures more often resemble
the subroutines in ordinary machine-code programming.

9.2. Identifiers

Quantities can appear in ALGOL programs only through their names,
which are syntactic objects classified as identifiers.

. 9.2.1. Examples of identifiers are
«x?v, «a», «y», «phin, «vcrity, «Ppt77tpy.
9.2.2. Identifiers have the syntactic form
«X» or «XYY...Y»,

where X stands for an arbitrary letter and every Y means an arbitrary
letter or digit. Thus an identifier is a sequence of letters and/or digits,
but always beginning with a letter. Syntactic diagram:

O—— leffer (cof 7.7)
———{ decimal digit (cf 77) =

Y

| /dentitier |

Fig. 2

§10. Numerical Constants 27

The possibility of forming names of more than one symbol gives a
sufficient supply of names. It allows to circumscribe the capital and
greek letters (bigm, beta), and to give variables mnemonic names such
as vertt. On the other hand it excludes the implied multiplication, since
e.g. «a by is always considered as one name and never as the product
of a with .

9.2.3. Semantics. Identifiers may be chosen freely and have, with the
exception of the identifiers of the standard functions and standard I/O-
procedures?, no preassigned meaning. However, the same identifier can-
not be used to denote more than one quantity at once (for more details
see § 42, Semantics of Blocks).

9.2.4. Restriction. Identifiers may be of arbitrary length, but only the
leading six characters of an identifier are used for identification (see SR,
item 2.4.3). Thus two identifiers which agree in the first six characters,

& coutputl?» and «outputvaluer,

are considered identical in the subset (but not in full ALGoL!) and there-
fore may cause trouble if both are used in the same ALGOL program.
In order to avoid trouble of this sort, it is strongly recommended to
restrict the length of identifiers whenever possible to at most six char-
acters.

9.3. Scope of a quantity

With the exception of labels and the reserved identifiers, every quan-
tity used in an ALGoL program must be declared. Such a declaration,
besides announcing the quantity and the name used for it, defines also
other properties (for this see Chapter VI) and especially the scope of a
quantity. The latter is defined as that part of an ALGOL program in
which the quantity exists and can be called through its identifier. Out-
side the scope the quantity is either nonexistent or temporarily in-
accessible.

§ 10. Numerical Constants

Values appear in ALGOL programs usually as values of variables;
these values can be changed in the course of a calculation. However,
where a value is known a priori and is the same in all applications of
the program, it can be given directly as a numerical or logical constant.

The syntactic objects denoting numerical constants are the unsigned
numbers, with the important subclasses wnsigned integers, decimal
numbers, exponent parts. The logical constants are represented by the
basic symbols «true» and «false».

1 Lists of these reserved names are given in 15.2.1 for the standard functions
and in 49.1 for the standard I/O-procedures.

28 II. Basic Concepts

10.1. Examples of unsigned numbers

Unsigned integers: «0», «175», «1», «3014», «000».
Decimal numbers: «.197», «510.0», «0000.0070», «11.754».
Exponent parts: «o85», ¢;q—7», ¢40», «o4711».
General case: «175,0— 7», «0007,5003», «1.1;411», «00.00,4+ 00»,

«1.234567,489».
(Some of these examples are inflated by insignificant zeroes, but this is
allowed.)

10.2. Syntax

10.2.1. The unsigned integers have the syntactic form

«ZZ...2»,

where every Z represents an arbitrary decimal digit.

10.2.2. With this, the unsigned numbers have one of the following syn-
tactic forms (the G’s denote arbitrary unsigned integers):

Decimal numbers: «G», «.G», «G.G»l.

Exponent parts: «,oG», ¢+ G», ¢ p—Gr.

General case: a decimal number followed by an exponent part?2.

10.2.3. Syntactic diagram (see Fig. 3).

10.3. Semantics

An unsigned number is a syntactic object which always represents
the same numerical value. Decimal numbers have the conventional
meaning, whereas the exponent part is a scaling factor expressed as a
power of ten.

ALcoL imposes restrictions neither upon the length of numerical
constants nor upon the size of the numbers represented by them, but
of course the computer limitations mentioned in 8.2 apply.

10.4. Types

Unsigned integers represent values of type integer, while all other
numerical constants are of type real. As a consequence, «2,,2» and
4200.000» are of type real, while «200» is of type integer but re-
presents the same value. The logical constants «true» and «false» are
of type Boolean.

1 The comma, which in some European countries is used as the standard
separator between integer and fractional part of a number, cannot be used for
that purpose in ALGoL. On the other hand, it is also forbidden to insert commas
as digit group separators in long numbers, e.g. 1,234,567.89.

2 Besides this, the RAR mentions — without making further use of it — a
syntactic entity called number.

§11. Labels 29

O—»ﬂdeC/ma/ aigit (cf2 7. 7)4]——— unsigned integer

o /\g).> i optional sign |

unsigned Q

infeger
decimal optional exponent
number sgn part

f

unsigned unsigned
\ /nfeger infeger
L ~

unsigned
number

Fig. 3

10.5. Negative constants

Unsigned numbers always represent non-negative values. Where
negative numerical constants are required, a symbol « —» may be placed
in front of an unsigned number; it should be recognized, however, that
such combinations, e.g. «—q00% «+1.234567,,89», are no longer un-
signed numbers, but arithmetic expressions, for which different rules apply
(cf. §16). On the other hand, a sign following the symbol ¢4» is a con-
stituent of the exponent part and not an arithmetic operator.

§ 11. Labels

Labels are used in ALGOL programs for identifying the destinations
of jumps, e.g. we can write «goto arica» and place a corresponding
label and colon «arica :» in front of the statement to which the jump
should be directed. Sometimes labels are also used to mark statements
just for explanatory purposes.

30 I1. Basic Concepts

11.1. Syntax

A label is an arbitrary identifier! and therefore a sequence of letters
and/or digits, but always beginning with a letter. Accordingly the follow-
ing are examples of labels:

waricar, «x7», «a», «dixiy, «PptiTtpy».

11.2. Source- and destination labels

Depending on the synactic position in which it appears in an ALGOL
program, a label is either

a destination label, 1.e. a label in front of a statement, e.g.
«arica:x:=1», or

a source label, if it occurs in a goto-statement, e.g. «goto x7», in a
switch list, or as actual parameter.

In the following, the word label will usually refer to the label as an
entity without regard to its syntactic position, whereas the attributives
source and destination indicate a specific syntactic position of the label
in question.

11.3. Semantics

A destination label is itself a quantity; it marks a spot in an ArcoL
program. A source label on the other hand is not itself a quantity but
only referring to the corresponding destination label.

As a rule, a source label can refer to a destination label only if the
two match exactly symbol for symbol (they are then called corvesponding).
However, the restriction of length (cf. 9.2.4) holds also for labels, and
thus a jump «goto identical» can well have the labelled statement
«identity : z 1= x-+sin(y)» as its destination.

11.4. Scopes of labels

Since destination labels are quantities, the rules of scope must be
observed. As an example, the same identifier may not be used more
than once as destination label at the same block level; it may, however,
occur several times as source label. For further details see § 42.

§ 12. Strings

In order that arbitrary sequences of basic symbols can be handled
by an ALGOL program (mainly for controlling I/O-operations), strings

1 According to the SR, item 3.5.1, unsigned integers are not admitted as labels
in SUBSET ALGOL 60.

§12. Strings 31

have been introduced. However, strings can appear in ALGOL programs
only as actual parameters of procedure statements or function desig-
nators (cf. §15, § 26).

12.1. Examples

«..thisutsuau ‘string’’ s,
«‘uuuuu’y,
«ulflsr —([Du‘else’ua:=buu’y,
«‘uusuddd.ddd,y+dduu’y.

12.2. Syntax

A string has the syntactic form

«’» or «Q0Q...0Q0»,

where «'» and « » are the string quotes and every Q denotes either
itself a string or any basic symbol except the string quotes.

Syntactic diagram:

O———@ @ I string I

any basic symbol
except string quores

] String

Fig. 4

Note. Except for the rules given above, the symbols contained in
a string are completely arbitrary; indeed, all other syntactic rules do
not apply inside strings.

12.3. Semantics

Strings serve as actual parameters of procedure statements or func-
tion designators! to whose execution they contribute certain nonarith-
metic information, e.g. formats for printing. Otherwise the basic symbols
contained in strings have no bearing on the execution of an ALGoL
program.

Within strings spaces may have a meaning. In order to discriminate
between relevant and irrelevant spaces, the former are denoted by the
symbol «u». This symbol, however, cannot be used outside strings.

1 For the precise conditions under which a string may appear as actual parameter
of a procedure call see 45.3.1.

32 II. Basic Concepts

§ 13. Comments

In order that explanations may be given between statements and
declarations of an ALGOL program, the following rule has been adopted:

13.1. The comment convention

After any symbol «;» or «begin» occurring in an ALGOL program,
arbitrary text may be inserted, provided the latter is enclosed between
the separators «comment»and «;» Indeed, the symbols following the
symbol «comment» up to and including the next following semicolon
are considered as nonexistent.

Likewise the symbols following «end» up to, but excluding, the next
following «;», «end» or «else» (whichever comes first) are considered
as nonexistent.

It should be recognized, however, that «comment» may never be
placed after a symbol other than «;» or «begin».

13.2. Examples

«begin comment: the variable zefa is no longer used ;»,
«; comment time is 2 Xmoney. stop forever ;»,

«end of loop ;»,

«end of type 27c¢-branching end»,

«end of while-condition [/+ [+ [/ —— elsen».

According to the above conventions, these 5 pieces of program are
equivalent to the constructions

«begin», «» «end;», «end end», «end else»
respectively.
13.3. Conflicting situations

If the ALGOL report is taken literally, the construction
«end begin comment jan ; klaus ;»1

gives rise to an ambiguity. Indeed, depending on whether we consider
first the comment situation induced by «comment» or by «end», the
above example will be equivalent to

«end ;» orto «end ; klaus ;».

However, if we accept that ALGOL programs are always read strictly
from left to right, then the «end» is considered first, hence «begin»

1 See Di1jksTRA, E. W.: ALcoL-Bulletin [2] Nr. 12, item 12.1.

§13. Comments 33

and «comment» are nonexistent and therefore this example must be
interpreted as «end ; klawus ;». Similarly, other examples such as

«comment look at ‘u; x:=1u’ prime:= 0 ;»,
«priext (' comment unonsense’) ;»,
«comment begin commenta ; b ;»

obtain an unambiguous meaning by reading strictly from left to right.
All the same it seems advisable not to make use of conventions which
are not explicitly stated in the RAR. It is therefore recommended that
the symbols «comment», «end», «‘», and «’» not be used in a comment
situation, i.e. in one of the situations described above.

3 Rutishauser, Description of ALGoOL 60

Chapter III

Expressions

An expression describes the computation of a new value from other,
already given values, in an obvious notation. The given values appear
in the expression

a) directly as numerical or logical constants;
b) as values of variables;
c) as values of function designators.

Expressions fall into two classes:

Avrithmetic expressions compute values of real or integer type; they
are the backbone of all numerical computations.

Boolean expressions compute values of type Boolean. Basically their
purpose is to facilitate logical calculations (Boolean algebra), but they
are also used frequently in numerical calculations when decisions con-
cerning the further course of the calculation must be made.

Wherever an expression is encountered during execution of an ALGOL
program, it is evaluated according to the rules given in this chapter and
produces a single value (of either real or integer or Boolean type). How
this value is further used is not defined by the expression but by the
context, i.e. the statement or declaration into which the expression is
embedded.

Though the rules adopted in ALGOL for evaluation of an expression
are mainly in accordance with long established conventions, they will
be defined here again from the bottom up. These definitions are neces-
sarily recursive because the rules for subscripted variables and function
designators already use the concept of an expression. Furthermore, func-
tion designators cannot be fully defined before procedures have been
introduced, but those in turn use all other elements of the language.

§ 14. Variables

Variables serve as carriers of values. Indeed, a computed value can
be attached to a variable and then remains associated with it. This value
can be used later in the calculation simply by inserting the variable
wherever the value is required.

We distinguish simple variables, which are naked identifiers, and sub-
scripted variables, which are identifiers appended by subscripts; the latter,

§14. Variables 35

however, are not written below the line as usual but are enclosed in
brackets.

Every variable has a certain type (real, integer, Boolean) which
defines the type of value that can be attached to it.

14.1. Examples
14.1.1. «omikron, «deltan, «t», «xI», «c878z» are simple variables.

14.1.2. «r[k]», e[k +1]», «r[5]», «r [m Xn — k}2] » are subscripted vari-
ables representing the A-th, £ +1-th, fifth and (m#» — £%)-th component
of the array 7.

14.1.3. «q[j3, 7[R], —3]», «rax{rax[rax[1]]]», «[j[m, n]]» are sub-
scripted variables with nested subscripts. If e.g. in the first of the
examples above we have ji=38, k=2, #[2]=5, then it represents the
(8,5, —3)-component of the three-dimensional array ¢. Furthermore,
if the components of the array rax have the values rax[f]=24, then
the second example represents the value 8.

14.2. Syntax

14.2.1. Stmple variables have the syntactic form «I», i.e. they are just
identifiers.

14.2.2. Subscripted variables have the syntactic form
«I[E,E,...,E]»,

where I represents an arbitrary identifier (more precisely, I represents
the name of the array of which the subscripted variable is a component),
and the E’s are subscript expressions, i.e. ordinary arithmetic expres-
sions?, but with a special rule of evaluation (for which see § 20).

14.2.3. Both kinds of variables are described by the following syntactic
diagram:

O—w—— variable identtier(cf38.2) —— simple variable |

s st/bsm}q/
W;Z% ; ;g} er —>@ expression @—’——@scf/}a%ed Vaf/'ab/eJ

(cr20.7)

()
)

Fig. §

1 Note that according to § 16, E can also mean a simple variable or numerical
constant because these are special cases of arithmetic expressions.

3#

36 II1. Expressions

14.2.4. Both simple and subscripted variables can appear in ALGOL
programs in essentially the same syntactic positions, except that a sub-
scripted variable can appear neither as actual parameter, if the cor-
responding formal parameter is called by name (SR, item 4.7.3.2), nor
as controlled variable in a for-statement (SR, item 4.6.1).

14.3. Semantics

14.3.1. A simple variable, if encountered during execution of an expres-
sion?, represents a single value, namely the value that has most recently
been assigned to the variable. This value is time-dependent insofar as
it is changed by every new assignment to the variable; between con-
secutive assignments, however, the value of a variable remains constant.

14.3.2. A subscripted variable «I[E,, E,, ..., Ey]», if encountered in an
expression?!, represents also a single value defined as follows: Evaluate

the subscript expressions E,, E,, ..., E,; if their values are 4, 4, ..., 1,
then the subscripted variable represents the value that has most recently
been assigned to the 7, 7,, ..., ip—component of the array I.

14.3.3. Restrictions. The use of variables is subject to certain restrictions
which have to do with the fact that simple variables and arrays must
be declared and have scopes (cf.42.2). In fact a simple variable is
nonexistent and unusable outside its scope. Furthermore, a subscripted
variable is nonexistent not only outside the scope of the corresponding
array, but also if any one of the subscript expressions produces a value
outside the bounds prescribed by the corresponding array declaration
for that subscript position. Finally, the value of a simple or subscripted
variable is undefined before the first assignment to it has occurred.

14.4. Types

Every variable is of a certain type (real, integer, Boolean), which
simply means that the variable can only represent values of that type.
However, in contrast to FORTRAN, types of variables are not distin-
guished syntactically but are defined by corresponding declarations.
More precisely, the type of a simple variable is defined by a ¢ype declara-
tion (cf. § 38), while for subscripted variables the type is defined for the
whole array (hence is common to all its components) by an array de-
claration (cf. §39).

§ 15. Function Designators

A function designator is a syntactic object which initiates evaluation
of a certain function. The resulting function value is then used in the
1 For the meaning of a simple or subscripted variable appearing on the left

side of an assignment statement see § 21; for their use as actual parameters of
procedure calls cf. § 45, 46.

§15. Function Designators 37

evaluation of the expression in which the function designator occurred.
Two classes of functions are used in ALGOL:

a) The 10 standard functions

sin, cos, exp, In, sqrt, arctan, abs, sign, entier, length,

which are permanent constituents of the language and have a fixed
meaning. These 10 functions can be used in ALGOL programs without
being declared and their identifiers are reserved names which should not
be used otherwise.

b) Function procedures. Besides the standard functions, the user may
introduce any functions he finds useful. However, these must be declared
by corresponding function procedure declarations (cf. § 46).

15.1. Examples
a) For the standard functions:

warctan (1)», «stn(1.45+2)», «n(1+%)»,
«length (‘.. thisuisuan ‘string’’)».

b) For function procedures:

«piy, «radius» (these are without argument),
«bessel(n, x)», «sinhyp(1o—3 Xtheta + exp (x))»,
«decide (15, true, roda) », «decide(n, a = entier (b), w)»,
«bessel (n12, sqrt (v[entier (x)])) »

(The reader may find declarations for some of these functions in § 46).

15.2. Syntax

The syntactic object which causes evaluation of a function is the
function designator. It can be used as a primary in an arithmetic or
Boolean expression (cf. §16, §18) and therefore is itself a complete
arithmetic or Boolean expression and may appear wherever the syntax
allows for an expression.

A function designator has one of the following syntactic forms:
15.2.1. For the standard functions:

«I(Q),
where I denotes a standard function identifier, i.e. one of the 10 names

«Simy, «cos», «expy, «Imy, «sqriy,
«arctany, «absy, «signy, «entiery, «lengthy,

and Q represents either an arbitrary arithmetic éxpression (for the func-

tions sin through entier), or a string or a string identifier (for the func-
tion length).

38 III. Expressions

15.2.2. For the function procedures (compare also 41.2):

«Iy, if the corresponding procedure declaration has the
syntactic form «T procedure I ; S»,

«I(Ay,4,,...,4,)», if the procedure declaration has the syntactic form
«T procedure I(F,, E, ..., F,) ; VCS».

Hereby T represents one of the declarators «real», «integer», «Boo-
lean», while I denotes the procedure identifier (the name of the function)
and the A’s are the actual parameters, which may be either expressions
or identifiers or strings (see § 45, 46 for further conditions which actual
parameters must meet).

15.2.3. Structurized forms. It is permitted to replace any of the commas
separating the actual parameters of a function designator with a syn-
tactic construction «)XX ... X:(» (parameter delimiter), in which the
X’s denote arbitrary letters.

15.2.4. Syntactic diagram.:

@ @@OE) @ @ 6@ @

arithmetie
expression
(cf79.6.)
string
(ef12.2)
length
O] string
/dentifier
(crqr.2)
\
!
proceaure T !
proced. (cf 26.2, with
L /?6/;//4}‘7762/’/ —>—® /’!,’.S‘f/’/'c///bﬂJ‘
of 41, stated in $46)
|
paramefer
delimiter O)
(cF 26.2)
function
designalon

Fig. 6

§15. Function Designators 39

15.3. Semantics

A function designator F, if encountered during evaluation of an ex-
pression E, represents a single value which is obtained by evaluating F
intercalatively in the evaluation of E as follows:

15.3.1. For a function designator pertaining to one of the standard
functions sén through entier, the arithmetic expression appearing as its
argument is evaluated, and with that value x the function is evaluated
as indicated by the following table:

Function Value of function designator I(x) Type of
function value

sin (%) conventional value, » taken in radians real
cos (%) idem real
exp (%) e¥ real
in(x) natural logarithm, undefined if # <0 real
sqri(x) positive branch of }#, undefined if x <0 real
arctan (x) conventional value y, — /2 <y < 7/2 real
abs (%) | %) real
sign (x) +1if x>0, —1if ¥<0, 0if =0 integer
entier (%) integer value % such that A <y <k +1 integer

15.3.2. The value of «length(S)» (where S represents a string) is the
number of basic symbols contained between the outermost string quotes
of the string S, and is of type integer.

15.3.3. For the evaluation of function designators corresponding to de-
clared function procedures see § 46.

15.4. Types

Every function is of a certain type, which means that corresponding
function designators can produce only values of that type. The types
of the standard functions are defined in 15.3.1 and 15.3.2 above: The
functions sign, entier and length are of type integer, while all other
standard functions are of type real. The type of a function procedure
is defined by the type declarator in front of the corresponding function
procedure declaration (cf. 41.2.2).

§ 16. Simple Arithmetic Expressions

Arithmetic expressions serve to describe computations in the domain
of real or integer values. They are written in conventional mathematical
notation, except that for exponentiation an operation symbol «%}» is

40 III. Expressions

used instead of raising the exponent, and that the multiplication symbol
« X » may not be omitted.

Arithmetic expressions may be simple or conditional. The latter are
treated in § 19, while here we deal only with simple arithmetic expres-
sions.

16.1. Examples
“a»
«sin(1.4542)»
«r[R]»
«1.234567,,— 89»
«919»
«a+b»
«[sqrt(y[1112+y[2]12+5[3112)13»
«2137,0—5 Xb+c/(a+ 7 Xb) — deltal2[4.1+ a X b[v]2»
«(a+0b) xc—d|(e/f+8) xhtk—Lllm»
«0.25 xsgrt((a+b+c) X (—a+b+c) X (a—b+c) X (a+b—c))»

Note. According to the syntax, also unsigned numbers, variables and
function designators are themselves simple arithmetic expressions, and
therefore all examples given in 10.1, 14.1, 15.1 are special cases of simple
arithmetic expressions.

16.2. Syntax
16.2.1. A simple arithmetic expression has the syntactic form

«<SPOPOP..PO Py,

where the P’s are the primaries of the expression (these may be either
unsigned numbers, simple or subscripted variables, function designators,
or arithmetic expressions in parentheses) and the O’s denote arithmetic
operators (cf. 7.1, d). S represents one of the symbols «+», «—» or
blank space.

16.2.2. Terms and factors. If all additive operators (those for addition
and subtraction) which are not enclosed in parentheses or brackets are
removed from an arithmetic expression, the latter falls into pieces which
we call the ferms of the expression. Likewise, a term falls into pieces
called factors if all multiplicative operators (those for multiplication and
division), as far as they are not inside brackets or parentheses, are re-
moved from it.

As an example, the terms of the eighth example in 16.1 are
€2137;0—5 Xb», «cf(a-+7Xb)», «deltal2[4.1», «axb[v]2»,

while «a», «b», «v}2» are the factors of the last term.

§16. Simple Arithmetic Expressions 41

16.2.3. Syntactic diagram:
———— unsigned number (cf 10.2) F——mw—

———————{ simple_variable (cf 14.2) ———
o—-—»—————l subscripted variable (¢fm.2) }—————
t————— Ffunction_designator (cf 15.2) F——s——]

"—@———‘ arithmetie expression (cf 79.6) }———@———

o optional sign] simple arithmetic
(cF 70.2) Loy] expression

arithmetic
operator
(cf77)

Fig. 7

16.3. Semantics

16.3.1. An arithmetic expression, whenever it is encountered during the
execution of an ALGOL program, produces a value according to the
following rules:

a) The primaries of the expression are evaluated independently and
their values are used for further evaluation.

b) Outside the primaries the following rules of precedence apply:

First i
Second X and |/
Third + and —

c) Except for b), precedence of arithmetic operators goes from left
to right.

d) Expressions occurring within the primaries are evaluated accord-
ing to the same rules.

The precise content of these rules may also be expressed by the
16.3.2. Equivalence rule for arithmetic expressions: Let
« O, POy, P, ... P,_, O, P»?
be a simple arithmetic expression in which the P’s represent the primaries
and the O’s are the arithmetic operators connecting them. If O, is an

1 It is assumed that the optional sign in front of this expression is blank space,
otherwise we would place another primary 0 (zero) in front of the expression and
thus establish the required syntactic form without changing the meaning.

42 II1. Expressions

operator which in the sense of 16.3.1, b has precedence over O,_, (or if
k=1), and O, , does not have precedence over O, (or if 2=#), then the
above expression is defined to be equivalent to

B0y ... 0y (Boy Op B)Opyy ... O, Bp».

Iterated application of this rule permits parenthesizing an arithmetic
expression to such an extent that the order in which the operations
should be carried out becomes obvious. In this way the eighth example
of 16.1 is transformed into

«((((213710—5 XB) =+ (¢/(a+ (7 x)))) — ((deliat2)[4.1)) + ((a X b) | (v}2))) »,

which simply means that the original expression could be evaluated in
the following order:

«2.137,0—5 Xb+cf(a+ 7 Xb) — deltat2 |41+ a xb[v}2»

1. 54 3 2 8 67 12 91110

Where function designators and/or subscripted variables are involved
in an arithmetic expression, evaluation of the former and selection of
the correct array component for the latter is also considered as an
operation which must be ranged among the other operators, e.g.:

«— 7.394,07%1s0 [k 42 X 7] X bessel (n}2, sqrt (x}2+ y12))[rax[rax[1]]».
|

15 43 2 1 14 10 5 9 6 8 7 1312 11

It should be recognized, however, that what these examples show is
not the only possible order of evaluation. Indeed, the compiler maker
has, within the bounds prescribed by the equivalence rules, considerable
freedom for organizing the evaluation of arithmetic expressions.

16.3.3. Execution of single arithmetic operations, types
Let a4 and b denote two single arithmetic values (of type real or
integer). Then the operations

«a+b», «a—>by» and «axb»

are defined according to convention. The resulting value is of type
integer if and only if both operands are of type integer, otherwise
of type real.

The operation «a/b» is the ordinary division of real numbers. The
resulting value is of type real irrespective of the types of 4 and b,
and therefore one can never rely upon the precision of the quotient of
two integers, even if the result is (theoretically) again integer-valued.
Besides, the quotient is undefined if b=0.

§ 17. Relations 43

The operation «atb» denotes exponentiation, 4 being the base and
b the exponent. The result ¢ of this operation is defined by the follow-
ing table:

b of type b of type Legend:
real integer C: Conventional value of a? of
> = <0l > = <O type real.
E: 1.0 of type real.
aoftype >0 | C E C |C E C 0:00of type real.
real =0 10 U U 10 U U . yndefined.
<0 v uovu c E C X: Undefined, except if b is an un-
aoftype >0 |C E C |X X U signed integer; then afb has
integer =0 (0 U U |X U U the conventional value and is
<0 U U U |X X U of type integer.

16.3.4. Undefined situations. Besides the cases mentioned already, the
value of a simple arithmetic expression is undefined if any one of its
primaries has an undefined value or a value of type Boolean.

16.4. Type of the value of a simple arithmetic expression

According to the rules given above, the value of a simple arithmetic
expression is (if defined at all) of type integer if and only if the values
of all primaries are of type integer and if neither divisions nor ex-
ponentiations (other than with unsigned integers as exponents) occur.
In all other cases the value is of type real.

16.5. Confrontation of examples with conventional notation

Conventional notation ALGOL notation

. alplg])

ai,k a [i’ k]

a¥’ at(bte)

art1 at(n+1)
—b4 Vb —dac Vzbj—‘“” (— b+ sgrt (b12—4 xa xc)) /(2 Xa)
P exp (—x/(4 X))/ (2 X sqrt (?))

2}
LE— 1/sqrt (1 — sin (alpha|2)}2 X sin (psi)}2)

l/1 — sin? (%) sinZyp

§ 17. Relations

A relation is a predicate which produces a logical value as the result
of comparing two arithmetic values. It can appear in a logical expression,

44 III. Expressions

and the logical value produced by it is used in the evaluation of this
expression (see § 18 below).

17.1. Examples

This produces the value true if x is zero, otherwise
it yields the value false.
{Test whether the point a, b lies inside the unit
circle; if so, it produces the value true.

«x=0» {

«af2+0f2<1»

WEn+1»

«sin(alf) < v[entier (bessel (n, x) X10)]»
. The result of this relation is true

wn =2 Xentier (025 +n/2)» {if n is even, false if # is odd.

«— 1> xIcrity.

17.2. Syntax

A relation consists of two simple arithmetic expressions separated by
one of the 6 relational operators (cf. 7.1):

simple arithmefic refational simple arithmelic
o——1 expression operaftor expression
(cf16.2) (cF77) (cf 16.2)
Fig. 8

The simple arithmetic expressions appearing on either side of a relational
operator are sometimes called the comparands of the relation.

17.3. Semantics

17.3.1. A relation describes a condition between two arithmetic expres-
sions. Wherever encountered during execution of a program, it represents
a logical value, namely

the value true, if the condition is fulfilled,
the value false, if the condition is nof fulfilled.

To obtain this value, the comparands of the relation are evaluated
indepedently and only then are their values compared.

17.3.2. Influence of roundoff ervors. If a, b are variables of type real,
then roundoff errors may completely reverse the value of a relation
such as «a=b», which is true if and only if the current values of a
and b coincide exactly. Analogous effects occur with the other five rela-
tional operators.

All the same, such a relation «a=b» may be useful, e.g. for skipping
parts of a computation in which exact coincidence of the numerical
values of 2 and b would be disastrous. However, it should not be over-
looked that it may make a difference which of the relations «a=0b» or

§18. Simple Boolean Expressions 45

«a—b=0» is used for this purpose, since due to roundoff errors no one
can guarantee that these two relations will produce the same logical
value.

The influence of roundoff errors may become a severe problem where
termination of iterative computing processes is done by tolerance criteria,
because these must be expressed in ALGOL by relations. It is not further
tragic if the roundoff errors involved in the evaluation of such a relation
have the effect that the termination is only delayed by a few iteration
steps, but it might happen that a termination criterion such as «abs(x)
< eps» is never fulfilled, even though x should theoretically converge
to zero.

17.3.3. It has occasionally been disputed what the meaning of a relation
like «a=>b» should be, if a is of type real, b of type integer (see H. C.
THACHER, ALGoL Bulletin Nr. 18, item 18.3.1). There is no problem,
however, since evaluation of a relation is essentially a comparison be-
tween values, thus the above relation produces the value true if and
only if the current value of a equals the current value of b.

§ 18. Simple Boolean Expressions

Boolean expressions serve to describe calculations with logical values.
They may be simple or conditional. Conditional Boolean expressions are
treated later in § 19, while here we deal only with simple Boolean ex-
pressions.

18.1. Examples

«chd» (c and)

w@=1Vb>—1» (a=1 or b>—1)

«—p» (not p) These five are
«truey These four at the same
r=2» are also time also
«la=—p)» Boolean Boolean
«ff[nt2]» primaries secondaries

«g=—alNbAN(cop=ql2Aq>p+k)V —ddcx (u, aVb)»
¢«—a+b=cVd[k+7]A(pV q>decide (n+1, x=0, roda)) »

Note. According to the syntax, logical constants, simple or sub-
scripted variables of type Boolean, relations and Boolean type function
designators are already complete Boolean expressions.

18.2. Syntax

A Boolean primary is either alogical constant, a (Boolean type) simple
or subscripted variable, a relation, a (Boolean type) function designator,
or a Boolean expression in parentheses. A Boolean secondary is either

46 ITI. Expressions

just a Boolean primary or a Boolean primary preceded by the operator
«—» (negation). Finally, a simple Boolean expression is a sequence of
Boolean secondaries separated from each other by binary Boolean opera-
tors (V, A, o, =):

+———T Binary Boolean operator |

ONORONO,

————— Jogical constant (c£7.1) }———

w1 simple variable (cf14.2) F————-

= subscripfed variable (cf 1#.2) }—»—f

Boolean
© primary
‘T relation (cF17.2) b————
\—»—1{ function designator (c£15.2) }——F
-—»@—>—| Boolean -expression (c£19.6) }->-@->—
o oz gy +——{ Boiar sty
—=— simple Boo/ean expression |

binary Boolean operator |—=—
Fig. 9

18.3. Semantics

18.3.1. A simple Boolean expression, when encountered during the exe-
cution of an ALGOL program, computes a logical value according to the
following rules:

§18. Simple Boolean Expressions 47

a) The Boolean primaries of the expression are evaluated independ-
ently and their values are used for further evaluation. Arithmetic and
Boolean expressions occurring as constituents of the Boolean primaries
again are evaluated in accordance with the corresponding rules.

b) Outside the Boolean primaries the following precedence rules apply :

First: — (negation)
Second: A (conjunction)
Third: Vv (disjunction)
Fourth: > (implication)
Fifth: = (equivalence).

c) Except for b), precedence of Boolean operators goes from left to
right.
The precise content of these rules may be expressed by the following

18.3.2. Equivalence rule for Boolean expressions: Let
«Se 0, 5,0, S, ... 0, S,»

be a simple Boolean expression, where the O’s denote binary Boolean
operators and the S’s are Boolean secondaries. In this expression ad-
ditional parentheses can be placed as follows without changing the
meaning:

First: All Boolean primaries which are relations are enclosed by
parentheses, and all Boolean secondaries which have the form « =Py,
are replaced by «(—P)».

Second: If O, is an operator which in the sense of 18.3.1,b has pre-
cedence over 0,_, (or if =1), and O, does not have precedence over
0, (or if 2=mn), then the above expression is defined to be equivalent to

Se Oy .o Op_1 (Siey Op Si) Opsq ... O, S,».

Iterated application of these rules permits parenthesizing a Boolean
expression to such an extent that the order in which the operation
should be carried out becomes obvious. Treating the last of the examples
18.1 in this way yields

«((—(a+d=c)) V@[E+7IA((pV q) o decide (n+1, (x=0), roda)))) »,

| | I
5 6 4 1 3 2

which gives a possible order of evaluation by the enumeration below the
expression. Likewise

«aVbA —cVdAeV —fAgVhA —i»

48 I11. Expressions

is transformed into

«((((av @A 0)))V(d/\e))\ll((-“/‘)/\g))\((h/\(—'i)))»-

N T T O A | |
1

3 2 5 4 8 6 7 11 109

18.3.3. Execution of single logical operations. The outcome of the opera-
tions —a, aVb, aAb, a>b, a=b, where a and b represent values of
type Boolean, is defined by the following table:

Value of a true false true false
Value of b true true false false
—a false true

alb true false false false
aVb true true true false
a>b true true false true
a=b true false false true

18.3.4. Types. Of course Boolean operations are defined only if the
operands are of type Boolean. However, variables and function desig-
nators of type real or integer, as well as numerical constants may still
occur in Boolean expressions, namely as subscripts, as actual parameters
of function designators and in relations.

§ 19. Conditional Expressions

A conditional (arithmetic, Boolean) expression may be thought of
as a device for choosing one of a given set of simple (arithmetic, Boolean)
expressions. This choice is made at evaluation time depending on certain
logical values.

19.1. Examples

19.1.1. Conditional arithmetic expressions.
«if x> 0 then 1 else if x<<0 then — 1 else 0».

Here a choice is made between the three expressions «1», «—1», «0»,
the first being evaluated for positive, the second for negative, the third
for vanishing x. The whole expression is therefore equivalent to the
standard function designator «sign (x)».

«if abs ()< 0.25 then4 X x elseif x>>0then2 — 4 X xelse —2—4 X x».

§19. Conditional Expressions 49

This example chooses between three linear functions in such a way that
on the whole the following function is represented:

¥
y=—2-4x
7+
y=2-4zx
| 1
=7 0 7 Zz
y=4x
_—7.;
Fig. 10

Thus conditional expressions are, among other things, an excellent
instrument for expressing discontinuous functions, but also for interval-
wise approximation of analytic functions, e.g.

«if t =0 then cos(sqgrt (£))
else
if £ << —0.1 then (exp (sqrt (— 1)) +exp (— sqrt (—¢))) /2
else
1—tx (1—t X (1—t X (1—1/56)/30)/12)/2».

(This computes for any real ¢ the value of the entire function cos (}/?)
with an accuracy adequate for a computer with a ten decimal digit
mantissa).

19.1.2. Conditional Boolean expressions.

«if x=0 then 2=0 else x> 0».
If x=0, the Boolean expression «z=0» is picked up and evaluated, but
if x==0, then the logical value of «x>>0» is taken as the value of the

whole expression. On the whole the meaning of this expression is de-
scribed by the following truth-table:

¥=0 ¥>0 ¥<0
z2=0 true true false
z220 false true false

4 Rutishauser, Description of ALcoL 60

50 III. Expressions

19.2. Syntax of conditional arithmetic expressions

19.2.1. The conditional arithmetic expression has the syntactic form

«if B; then E, else if B, then E, else ...

...elseif B, ,thenE,_, else E,»,

(1)

where the B’s represent arbitrary Boolean expressions!, and the E’s
represent simple arithmetic expressions.

19.2.2. In the RAR, §3.3.1, the conditional arithmetic expression was
defined as
«if B, then E; else C;», (2)

with C, representing an arbitrary arithmetic expression, while By, E;
have the same meaning as in (1). Since C; may again be conditional,
(2) is simply a recursive modification of (1), with C; standing in place
of «if B, then E, else if ... else E, ».

19.2.3. The syntactic construction «if B theny is called an if-clause,
while the E’s are the alfernatives of the conditional expression.

19.2.4. Syntactic diagram:

o~—(if)={ Boolean expression(eivs,

simple arithmete conditional
o expression (else)=~{simple arittmetic expression = arithmetic
(cf 76.2) expression

Fig. 11

19.3. Semantics

19.3.1. The value of a conditional arithmetic expression written in the
form (2) above is defined as follows:

a) Evaluate the Boolean expression B, .
b) If B, has the value true, the desired value of (2) is the result
of evaluation of the expression E;.

c¢) If B, has the value false, then the value of the expression (2) is
defined to be the value of the expression C;.

1 In principle, arbitrary Boolean expressions, hence also conditional ones (cf.
19.4), are allowed here, but for reasons of readability it is recommended to use
only simple Boolean expressions in if-clauses. This is easily achieved, namely by
enclosing conditional Boolean expressions in parentheses.

§19. Conditional Expressions 51

19.3.2. In view of the fact that C; may again be conditional, the evalua-
tion of a conditional expression is described in terms of the more ex-
tensive form (1) as follows:

d) Evaluate, in the order from left to right, the Boolean expressions
B,, B,, ..., etc., until one is found, B, say, which has the value true.
Then the value of (1) is defined as the value of E,. However, if none of
the B’s has the value true, then the value of the last alternative E,, is
taken as the value of (1).

Note. After the first Boolean expression B, having the value true
has been found, no further B’s are evaluated, i.e. the selection of the
alternative E, is independent of the fact that some of the later Boolean
expressions By, ;, ..., B,_; might also have the value true.

19.4. Conditional Boolean expressions

19.4.1. Syntax and Semantics of these are defined entirely analogously
to those of the conditional arithmetic expressions, only that now the
alternatives are simple Boolean expressions:

— simple Boolean - p cond/fional
I{i,;‘/lgf;‘g}e—» expression —@ &/mp/igff%”p ression Boolean
- (cf 18.2) = expression

Fig. 12

19.4.2. Conditional Boolean expressions can often be transformed into
equivalent simple Boolean expressions. Indeed, the construction

«if B, then By, else if B, then B,, else if B, then B, else B,,»
(where all B’s represent simple Boolean expressions) is equivalent to

«(B) A (Byy) V(—By) A (By) A (Byy) V
(7 B)A(=Bg) A (By) A (Bgg) V(= By) A(—By) A (= By) A (Byy) v,

provided all B’s have well-defined values.

However, if some of the B’s are undefined, this equivalence does not
hold. As an example, if v is an array with defined components v[1], v[2],
..., v[n], and kappa is a Boolean variable, then

«if k=0 then true else kappaAv[k] +£0»
is well-defined for all k=0, 1, 2, ..., #, whereas this is not so for

«(k=0) A (true) V(—k=0) A (kappaAv[k]=£0)», (or simplified :)
«kR=0VEk*=0AEkappahv[k]=40».

52 ITI. Expressions

19.5. Influence of types

The alternatives of a conditional expression must be either all arith-
metic or all Boolean. On the other hand, some of the alternatives of a
conditional arithmetic expression may be of type real, others may be
of type integer, i.e. these two types may be mixed. However, if this
is done, the following rule — a consequence of SR, item 3.3.4 — must
be observed:

The value of a conditional arithmetic expression is of type integer

if and only if all its alternatives are expressions which always produce

values of type integer?.

As an example, the expression (# declared integer, x declared real)

«if n=1A c=0 then 13 else n}x»

is a real type expression since the expression «nfx» is of type real
(cf. 16.3.3). Therefore, if the first alternative is chosen, the expression
has the value 13.0 of type real.

19.6. Syntax of general expressions

~ With the previous definitions we can now define the classes arithmetic
expression, Boolean expression, expression:

Simple_arithmelic expression (cf 16.2) |

arithmetic
expression

conditional arithmelic expression (cf 79.2) }———j

simple Boolean expression (cf. 18.2) |——w—

| »| Boolean
expression

condjtjonal Boolean expression (cf 19.4) —=—r

arithmetic _expression F——=—

expression

Boolean expression ——w—

Fig. 13

1 The purpose of this rule is that the type of value of an arithmetic expression
can be determined at compilation time, and thus dynamic handling of types be-
comes umnnecessary.

§19. Conditional Expressions 53

19.7. Further examples involving conditional expressions
19.7.1. «x + (if t >t then 1 else —1)/x».

We recall that a conditional arithmetic expression cannot be used directly
as a primary in a larger expression, but must for this purpose be enclosed
in parentheses (the sequence «+ if» is always illegal).

19.7.2. Selection of a component of an array with safeguards against
exceeding the array bounds:

«a[if k>n then » else if £ <1 then 1 else &]».

19.7.3. Where conditional expressions are intended as comparands of
a relation or as alternatives of a conditional expression, they must again
be enclosed in parentheses:

«if (if » then x else y) >0then (ifz=0thenx | yelse x—y) else x X y».
——

B, E, E,

Incidentally, the following is an equivalent form of this expression:

«if (uAx >0V —uAy>0)Az=0then x4y
elseif uAx>0V —uAy>0then x—y
else v X y».

19.7.4. «ifa>0then x +yelseifa=0then x<y {1 else x>y—1».

This is a conditional Boolean expression in which all occurring Boolean
elements are relations. It is equivalent to the following simple Boolean
expression (the parentheses are not actually needed but are placed for
the sake of readability):

«W(@>0Ax+NVe=0A(x<y+1)V(@<OAx>y—1)».
19.7.5. «if if a then b else ¢ then d else ¢»,

(where a, b, ¢, d, e are Boolean variables). Here the Boolean expression
in the if-clause is itself conditional, which is allowed but not recom-
mended. A more readable form is

«if (if a then b else ¢) then 4 else ¢»,
but with the rules of 19.4.2 it could also be transformed into
«(@AbV —aAc)AdV —(aAbV —aAc)Aey.
19.7.6. The conditional (integer type) arithmetic expression

«if a=0 then (if 5>2 then (if c<1 then 1 else 2) else if c=d then
3 else 4) else if 4> 0 then 5 else if abs(c)<< 1 then 6 else if abs(c)=1
then 7 else 8»

54 II1. Expressions

gives an exact picture of the following tree, insofar as it computes that
exit which is used for given values of 4, b, ¢, d:

b>2
(abste)z7)

abs(c)<?

¢=q abs(e)=1

§ 20. Subscript Expressions

Whenever the syntax requires a subscript expression, this simply
means that in principle only an integer-valued arithmetic expression
would be meaningful at that position. However, since this would be a
great disadvantage in computing practice and partly because there is
no syntactic criterion for integer-valuedness of an expression, arbitrary
arithmetic expressions are allowed as subscript expressions, but their
values are automatically rounded to the nearest integer.

20.1. Syntax
o—— arithmetic expression |——=—— subscripf expression |

Fig. 15

i.e. a subscript expression is just an arithmetic expression.

20.2. Semantics (Rounding rule for subscript expressions)

Whenever a subscript expression (i.e. an arithmetic expression stand-
ing in a position where the syntax requires a subscript expression) is
encountered, this expression is first evaluated in accordance with the
rules for arithmetic expressions. The value thus obtained is then rounded
to the nearest integer and converted to type integer. This rounded
value is taken as the value of the subscript expression.

20.3. On the use of subscript expressions

20.3.1. Subscript expressions are used in positions where strictly integer
values are required, i.e. as subscripts, as actual parameters corresponding

§20. Subscript Expressions 55

to integer type formal parameters (as far as they are called by value,
cf. 44.6), and on the right side of assignment statements where the left
side variables are of type integer. It was originally intended that only
integer type expressions should be allowed in such places, but it was
felt that this would be an impractical restriction. Therefore the rounding
rule has been adopted in order to allow in such positions also real type
arithmetic expressions which theoretically should produce integer values
but which in reality contain small deviations caused by roundoff errors
(e.g. 178.99999872, — 3.000001123, 1,—9)-

20.3.2. An example of such an expression is «n X (n—1) X(n—2)/6»,
where # is declared integer. We know that the resulting value should
always be an integer, but since the result of a division is of type real,
it may deviate by a small amount from an exact integer. A slightly
different situation arises with the expression

«1.1547005 X st% (1.047197551 X &) » (& being declared integer),
whose values are (for £=0,1,2,...): 0,1,1,0, —1, —1,0,

20.3.3. On the other hand it should be kept in mind that the rounding
rule is only intended as a countermeasure in cases where roundoff errors
cause deviations from results which theoretically should be integers. It
should not be used otherwise. Therefore an expression like

«3.141592653589 X k» (& declared integer),

the value of which is not generally close to an integer, should not be
used as subscript expression, though of course the rules of ALcoL would
allow it. In such cases it is recommended to achieve the rounding by
means of the standard function entier.

Chapter IV
Statements
In A1rcoL the statements are the units of operation, i.e. the smallest

syntactic objects which define closed subcomputations. Various kinds of
statements are in use, namely:

The dummy statement: « », i.e. empty space.

Assignment statements, e.g.: «y:=a-+b—c[k][phi».
Goto-statements, e.g.: «goto aricar.

Procedure statements, e.g.: «gauss(a, b, #) res: (x)».

For-statements, e.g.: «for k:=1 step 1 until n do v[k] := 0».
Conditional statements, e.g.: «if x>y then z:= sqrt(x — y) else

yi=1»
In addition we have the possibility of grouping statements together to

compound statements and blocks; these are again considered as state-
ments in all respects.

§ 21. Assignment Statements

An assignment statement serves to assign a computed value (value
of an expression) to a simple or subscripted variable in order to preserve
that value for later use. This value is then associated with the variable
until a further assignment to the same variable overwrites it with another
value. More generally, a single computed value may be assigned to several
variables simultaneously.

21.1. Examples
a=1»
«rec:=ahNbVcAdr»
«v[R] := arctan((a—b)[(2 Xc))»
«dq = rx:= falsey.

In the last example, the logical value false is assigned to the Boolean
variables dg and rx, while in the third example an arithmetic expression
is evaluated and its value is assigned to the k-th component of an array .

21.2. Syntax

An assignment statement consists of an arbitrary sequence of (simple
or subscripted) variables, each one followed by an assignment symbol

§21. Assignment Statements 57

«:=», the whole being followed by an expression. It therefore has the
syntactic form
«V:i=V:=..V:=E»,

where the V’s denote variables which are called the assignment variables,
and E stands for an arbitrary expression. The most frequently used
special case with only one assignment variable, i.e.

«V :=Ev,

is sometimes referred to as a simple assignment statement, in contrast to
the more general multiple assignment statement.

Syntactic diagram:

—— simple variable (cf 1.2) |—=—

o——t—=— subscripfed variable (of 14.2) | ai”:%,’zzf
"1 procedure ident/fier (cf 41.2) |

o assignment () expression assignment

variable \Z (¢cr19.6) statement

Fig. 16

Note. Only within the body of function procedure I may the procedure
identifier I occur as assignment variable.

21.3. Semantics
21.3.1. If an assignment statement
Wi=V,i=...V,:=E»
is encountered during the execution of a program, the following actions

take place:

a) If subscripted variables occur among the assignment variables,
their subscripts are evaluated first.

b) The expression E is evaluated.
c¢) The value of E is assigned to all variables V.

Though b) and c) will usually suffice to define the effect of an assignment
statement, the full rule is necessary in order to guarantee an unambiguous

58 IV. Statements

result in such cases as
«k:=alk]:=k+1».

Indeed, if this statement is entered with £=2, then the value 3 is
assigned to &[2], since the subscript 2 is determined before % is changed
to 3.

21.3.2. Restrictions. The fact that simple variables and arrays have
scopes and that for subscripted variables the values of the subscripts
must lie within the respective subscript bounds as prescribed by the
corresponding array declarations, this fact also has certain consequences
for assignment statements:
The effect of an assignment statement is undefined if any one of the
assignment variables is nonexistent (in the sense of 42.2) at the
location of the assignment statement.

21.4. Influence of types

21.4.1. All assignment variables of an assignment statement must be of
the same declared type, i.e. either all real, all integer, or all Boolean.
Furthermore, this type must be compatible with the type of the expression
E on the right side:

a) If the assignment variables are all Boolean, then E must be a
Boolean expression.

b) If the assignment variables are all real or all integer, then E
must be an arithmetic expression.

21.4.2. In case b) above, the type of the value of E may differ from
the type of the assignment variables. However, since only values of the
type of the V; can be assigned to the V;, the following actions take place
(if needed):

a) If the assignment variables are of type integer, then E iseval-
uated as a subscript expression, i.e. its value is rounded to the nearest
integer and converted to type integer before the assignment takes place.

b) If the assignment variables are of type real, but the value of E
is of type integer, then the value of E is converted to real type without
changing its value.

21.4.3. Thus examples such as (», & being declared integer, x, y, z de-
clared real):

on = (1.618033988}k — (— 0.618033988)1£)/2.236067977», and

xXi=y:i=2:=13»

are meaningful; the first example assigns (for not too large k) the -th
Fibonacci number to #. The second gives the variables x, y, z the value

§22. Sequences of Statements 59

3.0 of type real. On the other hand
«real ¢ ; integer 2 ; {:=k:=0®

is illegal according to 21.4.1.

§ 22. Sequences of Statements

In an ALGOL program the statements are written one after the other,
usually in the order in which they should be executed, and separated
from each other by semicolons.

22.1. Examples

22.1.1. The following sequence of statements describes the computation
of the rotation angle of a Jacobi rotation in the p, g-plane, a[7, /] being
the elements of the matrix to be rotated:

«theta := (alq, q] —a[p, p])/(2Xa[p,q]) ;
¢ := (if theta>0 then 1 else — 1)/(abs (theta) + sqrt (1 -+ thetat2)) ;

ci=1/sqrt(1+¢12) ;
s:=1tXcr.

The resulting values ¢, s are the nontrivial elements of the orthogonal
rotation matrix U which annihilates the p, g-element of UTAU.

22.1.2. «denom:=axe—bXd ;
%= (c Xe—bXx[)|denom ;
y = (aXf—dXxc)[denom»

describes the solution of the linear equations
ax+by=c, dx+ey=f.

The reader should be aware, however, that these examples are far
from being complete programs; indeed, the latter must fulfill a number
of additional requirements, for which see § 43.

22.2. Syntax
Statements are written in juxtaposition and separated from each
other by semicolons (see Fig. 17).

22.3. Semantics

Except for interruptions, omissions and repetitions which are caused
by goto-, conditional and for-statements respectively, the statements of
an ALGOL program are executed in the order in which they are written
down. That is, after the execution of one statement has been completed,

60 IV. Statements

—»—{ ossignment stafement (c£21.2) |

1 dummy statement (cfor.1) |—e—rT

= gofo~stafement (cF25.8) |——F

| procedure stafement (¢£26.2) |——

o
——e—1 compound stafement(cf212) F——

block (crz7.2)

1 conditional statement (cf 29.2) |+

L[for~statement(cf30.2) |—e—o-

O—— ——w— sequence of statements |

3

’

Fig. 17

the statement after the following semicolon comes into action. It is
explicitly understood that the execution of one statement does not begin
before the execution of the preceding statement has been completed.

§ 23. Labelled Statements

Any statement of an ALGOL program may be furnished with a label
(cf. §11); the two together form a labelled statement. Such a label may
be placed for explanatory purposes or for marking the destination of
a jump.

23.1. Examples

«arica: v[R] := arctan((a — b)/(2Xc))»
«jump: goto aricar»
«k137: for k:=1 step 1 until n do s:= s+ v[k]{2»

§23. Labelled Statements 61

are labelled assignment, goto-, and for-statements respectively.
«may : label? : elim : gauss(a, b, n) res: (x)»

is a procedure statement with three labels in front of it. According to
the rules this is allowed and the whole is again a procedure statement.

23.2. Syntax
23.2.1. If S denotes a statement, and L stands for a label, then

«L:S»

is the syntactic form of the labelled statement.

23.2.2. A labelled statement is again considered as a statement of the
same kind and therefore has the same properties and is subject to the
same restrictions as the corresponding unlabelled statement. Especially,
a labelled statement may again be labelled, as shown by the last of the
examples 23.1.

23.2.3. Syntactic diagram:

o label (¢f $17) ° X-statement A-statement |

Fig. 18

EEI Y e

(valid for X = “‘assignment”, ““dummy’, “‘goto”, *‘ procedure”, *‘ com-
pound’’, “‘ conditional”’, ‘ for”’, and mutatis mutandis also for ““block”).

23.2.4. In the following text we shall give all syntactic and semantic
definitions for the respective unlabelled statements; the possibility of
labelling statements is considered as self-evident and therefore not further
mentioned.

23.2.5. Notations. The label in front of a statement is called tke label of
the statement, and the statement obtained by depriving the labelled state-
ment of all its labels is called the unlabelled tail.

Furthermore, in our text the label in front of a statement will often
be used as the name of the statement such that e.g. the first of the
statements in 23.1 above would be referred to as ““the statement arica”.
It must be pointed out that this is used only for explanatory purposes
and has no bearing on the execution of a program.

23.3. Semantics

A labelled statement, whenever encountered during execution of an
ALGoL program, has exactly the same effect as the unlabelled tail would
have. As a consequence all semantic rules for statements also apply

62 IV. Statements

automatically to the respective labelled statements. Indeed, a label has
a computational purpose only insofar as a goto-statement may cause a
jump from another place in the program to that label.

§ 24. The Dummy Statement

The dummy statement is a statement with no effect whatsoever. It
may be used at places where syntactically a statement is required but
no effect is wanted.

24.1. Syntax

The dummy statement consists of blank space.

24.2. Semantics
The dummy statement has no effect.

24.3. Examples

A dummy statement may occur through one of the following syntactic
combinations:

«; ;», «begin ;», «else ;», « end», «beginend», «then ;»,
«then else», «do ;», «then end», «do endy».

24.4. Applications
Like all other statements the dummy statement may also be labelled.

This permits placing a label where it otherwise would not be allowed,
e.g. in front of the symbol «end»:

«; may: end».

Indeed, this combination is used frequently for jumping to the very end
of a compound statement, as will be demonstrated by some of the ex-
amples in the following chapters.

It should be recognized, however, that the label may is not attached
to the symbol «end», which would be syntactically impossible, but to
the dummy statement (blank space) between the semicolon and «end».
As a consequence, the semicolon in front of the label is indispensable.

§ 25. Goto-Statements
Goto-statements serve to interrupt the normal order of execution
of a program by a jump to a specified place.
25.1. Examples

«goto m17»,
«jump : goto aricar,
«goto ammon[k+17]».

§25. Goto-Statements 63

25.2. Syntax
A goto-statement has one of the syntactic forms?!

«goto L», where L denotes an arbitrary label, and

«goto W[E]», where W is a switch identifier (name of a switch), and E
is a subscript expression. The construction «W[E]» is
called a switch designator (cf. § 40).

Syntactic diagram:

switch subscript p
o—=—1 Jdentifier —*@—* expression (:) o";'.://:;‘/;fz/o/'

el 40.2) ref 20.1)

/abel (ef. §77)
goto stafement

swifch
designalor

Fig. 19

25.3. Semantics

25.3.1. A goto-statement «goto L» causes a jump to that statement S;
in front of which the label L is found as destination label. This has the
effect that from now on the statement S; and all following are executed
(again in their natural order) until a further goto-statement is en-
countered.
25.3.2. A goto-statement «goto W[E]» is essentially equivalent to
«goto L, », where & is the current value of E and L, is the k-th entry in
the switch list of the declaration for the switch W. For more details
see § 40, Switch Declarations.
25.3.3. Restrictions. In order that the jump to a destination label L be
meaningful, the following requirements — derived as special cases of the
rules of scopes given in § 42 — must be fulfilled:
For every goto-statement «goto L» there must be a unique destina-
tion label L such that the smallest block or controlled statement (which-
ever is narrower) containing L also contains the goto-statement.
As a consequence, no jump from outside into a block or for-statement
is possible, but of course jumps from inside these objects to destinations
outside are allowed.
25.3.4. For the restrictions applying to goto-statements of the form
«goto W[E]», see § 40, Switch Declarations.

1 According to the SR, item 3.5.1, no other forms of the goto-statement are
possible in SUBSET ALGOL 60.

64 1V. Statements

25.4. Applications

Neglecting for the moment the question of scopes — this will be
dealt with in great detail in § 42 — we proceed to some trivial examples
of situations that may arise with goto-statements. More realistic examples
can only be given in connection with conditional statements (cf. § 28,

§ 29).

25.4.1. «goto arica ;
comment jump forward, skipping parts of the program ;

c.m'ca: ti=1t+1n

25.4.2. «acryl:zeta:= zeta 12 ;

goto acryl ;
comment jump backwards, parts of the program are re-
peated, we obtain a loop ;

.

25.4.3. «begin
switch wernik := arica, acryl, m17, larix ;
goto wernik [%] ;
arica: ; comment this for k=1 ;!

éofo common |
acryl: ; comment this for k=2 ;

'goto common ;
m17: ; comment this for k=3 ;

éoto common
larix: ; comment this for k=4 ;

cCOmmon:
end».

Here, by virtue of switch wernik, the computation follows one of four
possible branches of the program depending on the current value of k.
Afterwards the common course of the calculation (i.e. the statements
which would follow «end») is taken up again.

1 The rule that requires a semicolon or «begin» in front of «comment» forces
us to construct a dummy statement «arica: ;» if we want to place a comment
after a label.

§26. Procedure Statements I 65

25.5. Closed loops
log (x) can be computed iteratively by a method based on the half-
argument formula of the hyperbolic cosine and described by the follow-
ing piece of program:
«pi=(x+1/x)/2;
q:=(x—1/x)[2;

ilerat:
1= sqrt(0.5 +0.5 Xp) ;
q:=qlp;

goto iterat».

Every time the bottom is reached, a jump back to #ferat occurs with
the effect that the last three statements are executed over and over
again and thus produce an infinite sequence of pairs p, ¢ (every new
pair overwrites its precedessor) where the p’s converge to 1 and the ¢’s
to log (x). However, since the computation never comes out of this cycle
and therefore cannot produce any results, this program is not meaningful.
Indeed, closed loops, as such never-ending repetitions of the same piece
of program are called, must be carefully avoided. As will be shown later,
this can be done by making goto-statements conditional; however, as
trivial as this may seem, often only a careful analysis, taking the in-
fluence of roundoff errors into account, can ensure that a loop is really
not closed.

§ 26. Procedure Statements I*

A procedure statement serves to initiate execution of an ordinary
procedure which either has been declared somewhere in the program
(cf. §41 and Chapter VII) or is one of the standard I/O-procedures
described in Chapter VIII.

26.1. Examples
26.1.1. Unstructurized procedure statements:
«gauss : jordan : matinv (75, aa, nores) »
«polar»
weuler (0, m[k], arctan (0.01), g +1, equ, f, u)»
sremark (x1, 27, divergenceu atu x1="}»
«outreal (15, x12)».
26.1.2. Structurized procedure statements:
«gauss : jordan : matinv (75) trans:(aa) exit: (nores) »
«euler (0, m[k], arctan (0.01), g +1, equ) trans: (f) ves: (u) »
«remark (x1) lines: (27) text: (‘' divergenceuatu x1=")».

171n this section we describe mainly the syntactic rules for procedure state-
ments; the semantics will be described later in § 45.

5 Rutishauser, Description of ALcoL 60

66 IV. Statements

26.1.3. By virtue of the corresponding procedure declarations as given
in Chapter VII, these examples have the following meaning:

The call of matinv inverts a 75X 75-matrix, given as an array aa,
essentially by the Gauss- Jordan method [29] such that after termination of
the procedure call the array aa contains the computed inverse (the matrix
is inverted on the spot!). However, since the diagonal elements are
chosen as the pivot elements irrespective of their size, the procedure call
may fail because one of these pivots vanishes, in which case a jump to
the label nores occurs.

The call of polar computes, for a point with given cartesian coordi-
nates x, y, its polar coordinates 7, phs.

The call of euler integrates a system of differential equations of order
m[k] from x=0 with given initial values f{1], /[2], ..., f[m[%]] over g-+1
steps of length arctan (0.01). The system is defined by the declaration
for procedure equ, which is also given as an example in § 44. The solution
is obtained as a two-dimensional array #, where %[%, 1] is the j-th com-
ponent of the solution at the ¢-th meshpoint.

The call of remark prints the text «divergence at x1=», followed by
the current value of the variable ¥ and 27 blank lines.

According to the definition of the standard I/O procedures, the call
of outreal outputs the value of x12, whereby the output medium and
the format are defined by the channel number 15.

26.2. Syntax
26.2.1. The unstructurized procedure statement has the syntactic form

«Iy or «I(4,4,...,A4)»,

where I denotes an arbitrary identifier (the name of the procedure to
be called) and the 4’s are the actual parameters, which define the objects
upon which the procedure should operate in the present call. The 4’s
may be expressions or identifiers or strings.

26.2.2. Structurized procedure statements are obtained by replacing one
or more of the commas separating the A’s by syntactic objects

XX ... X:(»,

where the X represent arbitrary letters. Such a construction is called a
parameter delimiter.

Note. For the Handbook a special form of the structurized procedure
statement is recommended (cf. 44.4.3).

26.2.3. Syntactic diagram (see Fig. 20).

26.2.4. Restrictions. The syntactic form of a procedure statement is to
some extent bound by the corresponding procedure declaration. Indeed,
if I stands for the procedure identifier, then the syntactic form must be

§26. Procedure Statements I 67

«I», if the declaration for I has the syntactic form
«procedure I; S», and

«I(A;, Ay, ..., A,)», if the declaration has the syntactic form
«procedure I(A, 5, ..., E); VCS».

In the second case the number of actual parameters must be equal to
the number of formal parameters in the corresponding procedure declara-
tion. Moreover, the k-th formal parameter F, and the A-th actual para-
meter 4, (counted from left to right) are said to be corresponding, which
in turn implies a number of relations that must hold between 4, and B,;
these will be stipulated only in § 45.

————— expression(cf19.6.) ———
——] variable identifier (cf38.2) |
——— array idenlifier (cF 39.2) }———
—>—-{ switch identifier (cF 40.2) }———
———{ /obe/ identifier (cf 41.2) |
L*—-I procedure idenkifier (ef41.2)
——=——1 sfring identifier (cF41.2) }—e—rd

?
e 7%‘ O—(}J’-(ﬂlfamefef delimiter |
\)J (cr7.7) : (

actval
paramefer

procedure
o——— Jjdentifier 77
(of41.2) aerua

paramefer

paramefer

delimiter
procedure
statement

Fig. 20

5"

68 1V. Statements

26.3. Semantics

26.3.1. Scopes. All identifiers occurring in a procedure statement must
represent (true or formal) quantities which exist at the location of the
procedure statement. In other words, a procedure statement must be
located within the scope of the procedure which it calls, and also within
the scopes of all quantities whose identifiers appear among the actual
parameters.

As an example, the procedure statement
weuler (0, m[R], arctan (0.01), g +1, equ, f, u)»

must be located within the scope of procedure euler, and in the environ-
ment of this call, quantities m, &, arctan, g, equ, f, # must exist.

26.3.2. Execution of a procedure statement. A procedure statement causes
execution of the corresponding procedure and at the same time defines
— through the actual parameters — the quantities and values to be
used as operands in that execution. The procedure then performs upon
these operands essentially the actions which are prescribed by the pro-
cedure declaration for the corresponding formal parameters. For more
precise information see Chapter VII.

§ 27. Compound Statements and Blocks

An arbitrary number of consecutive statements may be grouped to-
gether into one (compound) statement simply by enclosing them in the
word-symbols «begin» and «end». This has the effect that certain
actions which in principle apply to only one statement (mainly for- and
if-clauses) can be extended to operate on several statements simultane-
ously.

In addition, declarations can be inserted after the «begin» of a com-
pound statement; in this way we obtain a new element called a block.

Compound statements and blocks are themselves statements and
therefore may appear in ALGOL programs wherever the rules allow for
a statement.

27.1. Examples
27.1.4. The sequence of statements given in 22.1.1 is immediately turned

into the following compound statement:

! arctan means here the standard function. This does not mean that the con-
dition that it should exist is superfluous; indeed, the standard functions could
also be suppressed by declaring their names for other purposes (cf. 42.2.5).

§27. Compound Statements and Blocks 69

«begin
theta := (a[q,q] —a[p, p])/(2Xa[p.q]) ;
t 1= (if theta> 0 then 1 else — 1)/(abs (theta) 4 sqrt (1 + thetal2)) ;
ci=1/sqrt(1+#12) ;
s:=1IXc
end».

27.4.2. «begin
a:=c+1jc—2;
b:=cxat4;

mjc: begin
t:=axbc;
v:=albXc
end mjc ;
a:=at1.2
end».

This compound statement contains four statements, one of which is itself
a (labelled) compound statement

«mjc: begin {:= axbjc ; v:= albXc end».

27.1.3. «block : begin
real ¢ ;
¢ = (1+a13+at6)](1+at2+atd) ;
a:= exp (#12/2) — a X cos (t) -+ sqrt (t+1/¢)
end»

is a labelled block. The declaration at its beginning introduces a new
variable ¢ which is existent only within this block and serves there as an
auxiliary variable for storing the value of the expression

«(1+at3+4at6)/(1+at2+at4)»
temporarily.
27.2. Syntax
27.2.1. Compound statements and blocks have the syntactic forms

«begin S ;S ;...;Send» and
«beginD ;D ;...;D;S;5;...;S end»

respectively, where the S’s denote arbitrary statements and the D’s re-
present arbitrary declarations (cf. Chapter VI).

The construction «begin D; D;...; D ;», which contains all declara-
tions of a block, is called the block head.

Note. Since compound statements and blocks are again statements,
the following are allowed constructions:

70 IV, Statements

«begin S ; S ; beginD ;D ;S ;S end; beginS;Send;S end»
«begin D ;S ; beginD ;S ; begin D ;S ; S end end end».

However, it is not allowed to precede a declaration with a state-
ment; indeed, a declaration may only be placed after a begin or after
another declaration.

27.2.2. Syntactic diagram:

sequence of
stalements ompouno’s/afemeﬂf |

(ch22.2)

Type declaration
(¢t 38.2)

array declaration
ref 39.2)

o_’_@ switch declaration 'y block
9 (e 40.2) 0/ head
procedure declaration
(cF41.2)
sequence o
0 block head - statements @
(cf22.2)
Fig. 21

27.2.3. Remarks. Since the semicolon is required only for separating
statements, no semicolon is needed in front of the end (If we do place
one, this introduces a dummy statement but causes no error). However,
if a compound statement or block is followed by another statement, a
semicolon is needed after the «end» (If we forget it, the subsequent
statement is considered as a comment, and this is indeed an error).

27.3. Semantics of compound statements?
27.3.1. The execution of a compound statement is equivalent to the
execution of the sequence of statements contained in it, and this is
described in 22.3. However, the following exceptions must be observed:
" 1 For the semantics of blocks see §42.

§28. The If-Statement 71

In addition to the normal entrance to a compound statement, i.e. the
entrance through «begin», it may also be entered by a jump from outside
to one of the labels contained in it. In that case the compound statement
is executed from that label onwards. Moreover, in addition to the normal
exit from a compound statement, i.e. the exit through «end», an exit
from a compound statement may also occur by a jump to a label located
outside.

27.3.2. It is thus apparent that the «begin» and «end» of a compound
statement have no bearing on the execution of a program, with the ex-
ception of those cases where the compound statement is

either a complete program (cf. § 43),

or the controlled statement of a for-statement (cf. § 30),

or an alternative of a conditional statement (cf. § 28 and § 29),
or a procedure body (cf. § 44).

For instance, in the compound statement given as example 27.1.2, the
«begin» and «end» of the internal compound statement (labelled mjc)
could be omitted without the slightest alteration of the operational effect
of this piece of program. Whether the outer «begin» and «end» could
also be removed depends upon the environment into which this com-
pound statement will be embedded.

§ 28. The If-Statement

A statement can be made conditional by placing an f-clause in front
of it. This if-clause states the condition under which the subsequent
statement is executed.

If-clause and subsequent statement together are the if-statement,
which is the simplest kind of conditional statement, while all kinds of
statements described in § 21 —27 are called unconditional statements.

28.1. Examples
28.4.4. «if x=0 then x:= ;,—20».
This obviously means that a vanishing # is replaced by a small non-zero

number, e.g. in order to avoid trouble in a later division. If x 4-0, this
statement has no effect.

284.2. «if k>0A k<5 then goto wernik[k]».

if-clause goto-statement

It is assumed that wernik is the switch declared by the example in 25.4.3.
Here, the if-clause serves to prevent the computation from running into
the undefined situation mentioned in 40.3, c.

72 IV. Statements

28.1.3. (cf. 22.1.1).

«if rotate then
begin
theta = (a[g, 4] — a[p, p)I(2 X alp,q)) ;
¢ .= (iftheta> 0 then 1 else — 1)/(abs (theta) + sqrt (1 +theta}2)) ;
c:=1/sqrt(1+#2) ;
si=c¢ Xt
end».

Here the whole compound statement is subject to the if-clause, i.e. if
the Boolean variable rofate has the value false, none of the statements
is executed. Obviously «begin» and «end» have an operational meaning
in this case, namely they prevent the first of the four statements from
being the only one subject to the if-clause.

28.1.4. «if x>0 then put: z: = if y<x then x else y».

if-clause labelled assignment statement
(with conditional expression on the right side).

28.1.5.
Conditional Boolean expression

«if (if x=0 then z>cos (sgrt (x)) else 2> coshyp (sqrt (— x))) then x :=0».
——
if-clause state-

ment

Assuming that «coshyp (x)» is a function designator which computes the
hyperbolic cosine of the argument, the condition in the if-clause checks
whether the value of z exceeds the value of the entire function cos }/x.

28.2, Syntax
The if-statement has the syntactic form

«if B then S;»,

where B represents an arbitrary! Boolean expression and S; is any
statement whose unlabelled tail does not begin with the symbol «if».
Where an if-statement is followed by the symbol «else», it is always
part of an if-else-statement, for which see § 29.

1 As in the case of conditional expressions, it is also recommended to use only
simple Boolean expressions here.

§28. The If-Statement 73

Syntactic diagram*:

dummy
statfement
(cFaer)

assignment
stalement
(cr2rz)

goto-stafement
(cf 25.2)

vneconditional
statement

procedure
stafement
(Cr26.2)

compound
statement
(ef27.2)

block
(ef 27.2)

unconditional
statement

/(,;}'07./;?;9 /F~statement
ror-statement
(er30.2)

Fig. 22

28.3. Semantics

28.3.1. The execution of an if-statement «if B then S;» involves the
following operations:

a) Evaluation of the Boolean expression B, and
b) Execution of the statement S,, if B has the value true, but
c) No further action, if B has the value false.

1 The reason why the for-statement is not ranked among the unconditional
statements (this is a difference between the original and the revised ALGOL report)
is to avoid the ambiguity that could arise in connection with for- and if-else-state-
ments (cf. 30.4).

74 IV. Statements

Thus an if-statement with B=false is equivalent to a dummy statement,
while for B=true it is as if the if-clause were not present!.

28.3.2. If a jump from outside S is directed to a destination label which
is part of Sy, then the if-clause is disregarded. Thus a jump to the label
put in example 28.1.4 would be allowed and would cause the uncon-
ditional execution of the statement «z:=...», whereupon the sub-
sequent statement is taken up:

if x>0 then put: z:=if y<<x then x else y ;

> execution————eo—>

goto put ‘—j

Fig. 23

28.4. Applications

28.4.1. The historical background of the if-statement is the conditional
jump as a machine code instruction, and indeed also in ALGOL the cor-
responding device «if...then goto...» is used frequently, especially
for breaking closed loops.

However, the customs in writing programs in machine code need not
necessarily be taken over into ArLGoL. For instance, in ALGOL the ex-
ample 28.1.3 is more appropriate than the equivalent form

«if —rotate then goto over ;

theta:= (a[g,q] —a[p, p))/(2xa[p,q]) ;
¢ := (if theta> 0 then 1 else — 1)/(abs (theta) + sqrt (1 + thetat2)) ;

c:=1/sqrt(1+842) ;
s:=1tXc ;
over:...»,
which has a strong scent of machine code.
28.4.2. The breaking of closed loops may now be demonstrated: Take for
instance the example in 25.5; it can now be modified into

«pi=(x+1/x)[2;

g:=(x—1/x)/2;
tterat: P = sqrt(0.5+0.5 Xp) ;
q:=4qlp;

if » >1.000015 then goto erat ;
final: log:=13 Xq[(2+p)».
Obviously the jump back to #ferat occurs as long as p >1.000015, which,
because p converges to 1, will not be true forever. Thus, sooner or later,

1 This is correct only in SUBSET ALGOL 60 because otherwise the evaluation
of function designators occurring in the Boolean expression B could produce a
side effect (cf. 46.5).

§28. The If-Statement 75

the loop will be discontinued, and the computation will continue with
the statement final.

An equivalent setup is

«pi=(x+1]x)[2 ;
g:={x—1/x)/2;
iterat: if p >1.000015 then
begin
P 1=sqrt(0.5+0.5 Xp) ;
g:=4qlp;
goto ierat
end ;
final: log:=3 Xq|/(2+p)».

The only difference between this and the first version is that when (in
the second version) for the first time $ =1.000015, the jump to dterat
occurs again, but then the if-statement acts as a dummy statement, and
therefore its successor — the statement fizal — comes into action.

In devising such a scheme for breaking closed loops, it must be en-
sured that it works not only with the theoretically expected values, but
also with the numbers occurring in the actual computation. In the above
examples the roundoff errors might have the effect that the numerically
calculated values p forever remain above 1.000015, and then we would
again have a closed loop despite our attempts to prevent it. In the
above examples the constant 1.000015 (chosen to yield a 10-digit log-
arithm) is far enough away from 1 to guarantee discontinuation of the
loop for computers with at least an eight-digit (decimal) mantissa.

28.4.3. Warning: According to the syntax, the sequence
«if x=0 then if a>b then¢:= 1»

is obviously not allowed. To describe the desired effect in correct ALcoL,
we must write instead

«if =0 then begin if >b then {:= 1 end»

(in this way the statement following the first «then» becomes uncon-
ditional). We note in passing that as long as the values of a4, b cannot be
undefined, the same could also be achieved by

«if x=0Aa>0bthent:= 1».

However, this latter form may be less efficient in cases where the if-
statement is executed frequently and the condition x=0 seldom fulfilled.

28.4.4. It goes without further mention that in the sequence

«if 20 then p := 0 ; goto arica»,

76 IV. Statements

only the statement «p := 0» is subject to the if-clause. If it is intended
that the jump, too, should be conditional, the whole must be rewritten as

«if z4=0 then begin p:= 0 ; goto arica end>».

§ 29. The If-Else-Statement

The if-else-statement is an extension of the if-statement and allows
selecting and executing one of several unconditional statements, the
latter being called the alternatives of the if-else-statement. The selection
is made via a number of conditions which, together with the alternatives,
constitute the if-else-statement.

The if-else-statements together with the if-statements form the class
of conditional statements.

29.1. Examples
20.1.1. «if x>0 then goto pos: else goto negar

if-clause first alter- second alter-
native native

This statement causes a jump to pos¢ if x>0 or a jump to nega if x=<0.

29.1.2. Intervalwise approximation of the Bessel function J,(x):

«if abs (%)< 8 then

begin
real ;
t:=—x12/32;

70 := 0.99999999 + £ X (7.999999 99 -+ £ X (15.999 998 78
+ X (14.222203 20 +£ X (7.111 007 52 + £ X (2.275 260 80
+ 8 (0.505 177 60 +£ X (0.082 021 76 + # X (0.009 950 72
+ 1 X (0.000 860 16 -+ £ X 0.000 040 96)))))))))

end
else
begin
real ¢, 0,40,y ;
ti=—064[x12 ;

$0:=0.797 88456 4 X (0.000876 54 +¢ x (0.000021 57
+£%0.000001 28)) ;
g0 1= 0.012466 95 £ % (0.000114 15 4 £ X (0.000 005 49
+£X0.00000051)) ;
y = x%—0.785308163 Xsign(x) ;
10 1= (p0 X cos(y) + g0 X sin (y) X 8/x)/sqrt (abs (%))
end».

§29. The If-Else-Statement 77

Both alternatives of this if-else-statement are blocks; the first block
approximates the power series between — 8 and +8, the second uses
asymptotic series for representing the function outside the interval
|#| <8. The maximum error is on the order of ;,—7.

29.1.3. Example with more than two alternatives (square root x4y of
a complex number ¢=a+15):

b= sqri(at2+o12) ; {thls statement is outside

the conditional statement.

ifp=0thenx:=y:=0 first alternative: ¢=0.
else
if 2>0 then
begin
%= sqrt((a+$)[2) ; second alternative: if ¢ is
y:i=b(2Xx%) in the right half plane.
end
else
begin . e
. third alternative: if cisin
h— > f—
y:=if5=0 then sgrt((p —a)/ 2,) the left half plane or on
else —sgri((p —a)/2) ; N .
o the imaginary axis, but
%:=0/(2X¥)
end>». not zero.

29.2. Syntax
29.2.1. An if-else-statement has basically the syntactic form

(1) «if B then U else S»,

where B denotes a Boolean expression, U an unconditional statement,
i.e. one beginning with neither »for« nor »if¢, and S stands for an
arbitrary statement.

29.2.2. Since the Sin (1) above may itself be an if- or an if-else-statement,
we are finally lead to the most general form of the conditional statement,
expressed in terms of unconditional and for-statements!:

The open form:
(2) «if B, then U else if B, then U, else ... else if B, then S;»
The closed form:

(3) «if By then U else if B, then ... else if B, then U, else S;».

1 As in § 28, Sjt denotes a statement whose unlabelled tail does not begin with
the symbol «if», i.e. an unconditional or a for-statement.

78 IV. Statements

29.2.3. Terminology. In the syntactic forms (2), (3) above the statements
U, and S are called the alternatives of the if-else-statement. This term
is sometimes also used for the simple if-statement, which occurs as a
special case of the open form for » =1, although the term may seem
somewhat misplaced in this case.

29.2.4. Syntactic diagram for the if-else-statement:

for-statement
r ref. 30.2) *—)
: uncond'itional unconditional
o /{1;}0/{;7:29_» statement else statement
i (cr28.2) (cF28.2)
/1~ stafement
(y=Atabertet 51) (¢ 26.2)

/F-else-statement

if~stalement (cf28.2)
o H condifional statement
[F-else-statement |

iF-else-statement

Fig. 24

20.2.5. Labels tn an if-else-statement. Since in the syntactic representa-
tion (1) the statement U as well as S may be labelled, labels may appear
in the syntactic representations (2), (3) not only in front of the alter-
natives U;, Sy, but also in front of any if-clause. Thus

«p:ifx=0thengq: y:=0elser: ify==0thens: x:=2else’: gotof»
N—— et N ! N, e

if-clause U S

N, et \eesrne e’

if-clause U S
would be allowed.

29.2.6. Warning. It seems that because of the rule which requires that
statements be separated by semicolons, programmers have the habit of
automatically placing a semicolon after every statement. Some of these
may be superfluous insofar as they just generate dummy statements
which do no harm. However, if a semicolon is placed after one of the
alternatives (except the last one) of an if-else-statement, e.g.

«if x=0 then goto posi ; else goto nega»,

this is a syntactical error; in fact, the combination «; else» is never
correct outside strings.

§29. The If-Else-Statement 79

29.3. Semantics

29.3.1. The simplified rule. As long as no jumps into one of the alter-
natives occur, the effect of an if-else-statement represented in the form (1)
can be visualized as follows:

-ﬁ frue I
8-false execution of §

Fig. 25a

As a consequence of this we immediately obtain an analogous picture
defining the effect of an if-else-statement represented by one of the
syntactic forms (2) or (3):

entry

% false 2 false
true true

20.3.2. Equivalence rule for if-else-statements. Usually the above diagrams
will be sufficient, but the most general case requires the following more
precise rule:

An if-else-statement «if B then U else S»is defined to be equivalent
to the compound statement

exit

—_— — —
for the open form forthe closed form

Fig. 25 b

«begin
if B then begin U ; goto L end ;
S

end»,

in which L denotes a label considered to be different from any other label.

In case S is again an if-else-statement, the same rule is applied again
to S, etc. until finally (and after removal of some unnecessary begin’s
and end’s) the following equivalent forms for the syntactic representa-
tions (2) and (3) are obtained:

80 IV. Statements

For the open form (2):

«begin
if B, then begin U, ; goto L end ;
if B, then begin U, ; goto L end ;

if B,_, then Begin U,_,;gotoL end ;
if B, then S; ;
L:
end».
For the closed form (3):
«begin
if B, then begin U, ; goto L end ;
if B, then begin U, ; goto L end ;

if B, then begin U, ; goto L end ;
Sit 5
L:
end».

In this way the if-else-statement is expressed entirely in terms of if-
statements and therefore the semantics of the former follows now
from § 28.

29.3.3. An example for which only the general rule gives the correct
answer, is!

«if x=0then adv: x:=y—1 first alternative
else
r: ify>1 then

begin
yi=y+c;
if c<<0 then goto 7 ; second alternative
if ¢ >1 then goto adv

end

else
polar». third alternative

With the equivalence rule above, this transforms into
«begin
if x=0 then begin adv: x:=y—1 ; goto exitit end ;
r: if y>1 then

1 Needless to say we do not recommend such jumping within an if-else-state-
ment, since it tends to disguise the intentions of the programmer and thus may
give a skew picture of the computing process.

§29. The If-Else-Statement 81

begin
begin
yi=y+e,
if c<0 then goto 7 ;
if c >1 then goto adv
end ;
goto exittt
end ;
polar ;
exittt :
end».

It follows that if the given statement is entered e.g. with x40, y >1,
then the second alternative is taken up. If furthermore ¢<<0, then a
jump from inside the second alternative back to the label # occurs,
which causes a second entry into the second alternative. This repetition
continues until finally y <1, whereupon the third alternative (procedure
statement «polar») is executed, after which the execution of the if-else-
statement is terminated. If, however, ¢ was > 1, then «goto 7»is skipped
and «goto adv» executed instead, which causes a jump to and execution
of «x:= y —1», after which the execution of the if-else-statement again
terminates.

29.3.4. If-else-versus sequence of if-statements. Example 25.4.3 could now
be rewritten equivalently as

«if k=1 then arica: begin ... end

else
if z&=2 then acryl: begin ... end
else
if k=3 then m17: begin ... end
else

if k=4 then larix: begin ... end».

It would seem that in this example, where the four conditions are dis-
joint, the else’s could just as well be replaced by semicolons, thus
splitting the if-else-statement into four if-statements. Often this is true;
however, & might undergo changes in one alternative, which could have
the effect that one of the later conditions would also be fulfilled, and then
the sequence of if-statements would no longer be equivalent to the
if-else-statement. In this sense the if-else-statement is safer, insofar as
the rules guarantee that always only one of the alternatives is executed.

29.4. Efficiency considerations

Obviously the rules allow arranging if- and if-else-statements in
several ways, all of which yield the same effect but may differ widely in

6 Rutishauser, Description of ALGoL 60

82 IV. Statements

efficiency. No rules can be given as to which setup is the most economical,
but a few examples may be helpful:

29.4.1. Example 25.4.3 is a more efficient form than 29.3.4 since the
latter requires testing of two conditions on the average while theformer
directly selects the proper label.

29.4.2. «if x3=0Ay>0 then alpha

else
if x =0Az=0 then beta
else
if x3=0Az>2 then gamma
else

if x 3=0 then delta»

(alpha, beta, gamma, delta being procedures without parameters). If the
condition x Z=0 is seldom fulfilled, then it is better to test this condition
first, making the other conditions subordinate to it:

«if x =4=0 then
begin
if y>0 then alpha
else
if 2= 0 then beta
else
if z>2 then gamma
else
delta
end».

Indeed, in this way x ==0 is tested only once, and only if the condition
holds, are the other conditions tested at all.

An equally economical version is

«if x=0 then
else
if y>0 then alpha
else
if z=0 then beta
else
if 2> 2 then gamma
else
delta».

We observe that the first alternative is a dummy statement which
causes skipping of the whole in case ¥ =0 is not true.

§30. The For-Statement 83

§ 30. The For-Statement

A for-statement is a shorthand notation for a loop. It consists of a
controlled statement and a preceding for-clause. The latter defines how
often and for what values of the running subscript the controlled state-
ment should be executed.

30.1. Examples

30.1.1. «for ¢:=1 step 1 until » do v[7] := 0».
I I |
for-clause controlled
statement

This for-statement annihilates all components 1 through # of the vector v
and thus in a certain sense represents the vector operation v :=0.

30.1.2. «h:=0;
for k:=n step — 1 until 0 do %2 :=h xx+4-a[k]».
| i |
for-clause controlled
statement

Here the controlled statement «4:= A Xx4-a[k]» is executed once for

each of the values k=#n,n—1,%#—2,...,1, 0 (in that order) and thus

by virtue of the initialisation «%:= 0» computes the value of the poly-
n

nomial Y’ a[k] #* by HORNERs rule. Thus, obviously, a running subscript

E=0
may also run backwards.

30.1.3. Example with a nested loop (generation of unit matrix):

—for-clause 1
«for 7:=1 step 1 until » do
for :=1 step 1 until »n do a[z, /] := if i=7 then 1 else 0».
L for-clause2——— L controlled statement 2 —!
| controlled statement 1 !

Controlled statement 1, which is itself a for-statement, is executed for
all 4, hence controlled statement 2 is excuted for all ¢ and j.

30.1.4. Multiplication of matrix a with a vector b:

«for i:=1 step 1 until » do
comp: begin
c[i]:=0;
for j:=1 step 1 until » do ¢[7] := c[i]+a[s, 7] Xb[f]
end i».

6*

84 IV. Statements

The controlled statement of the for-i-clause is compound statement comp,
which is therefore executed (as a whole) once for every value 7=1, 2,
..., n. Every execution of comp of course includes complete performance
of the for-j-statement.

30.1.5. «for k:= 0 step 1 until » do
kappa := if k=0 then true else kappaAv[k] +=0»

tests whether all components of an array v[1: #] are nonzero, and only
if this is so, does kappa obtain the final value true. Note that here 19.4.2
cannot be applied.

30.1.6. Other ways of governing the running subscript (which in this
case is not actually a subscript but a real type variable) are demonstrated
by the example

«for z:= x42,a[0], —1, 1, z/2 while z>,,—6 do begin ... end»
| It |

single expression while element
elements
' for-clause I L controlled -!
statement

Here z runs through the values %42, 4[0], —1, 1, and then 1/2, 1/4, 1/8,
etc. until 1/524288 (which is the last one fulfilling the condition z>>,,—6),
and for every one of these z the whole compound statement «begin
... end» is executed.

30.2. Syntax
30.2.1. The for-statement has the syntactic form

«for V:=F do S»,

where V represents a simple variable of real or integer type (called the
controlled variable), F is the so-called for-list, and S is an arbitrary state-
ment (the controlled statement). The construction «for V:=F do» is
called the for-clause.

30.2.2. In most applications, e.g. in the examples 30.1.1-4, the for-list
will have the syntactic form «E; step E, until E;», where the E’s denote
arbitrary arithmetic expressions. It means that the controlled variable
runs through a strictly linear sequence

E,,E,+E,, E;+2XE,, etc. (until af most Ej).

30.2.3. In the most general case, however, the for-list can be a con-

struction
«H,H,...,H»,

whose entries H, called the for-list elements, are separated by commas
and may have one of the following syntactic forms:

§30. The For-Statement 85

«E» (single expression element),
«E, step E, until E;» (step-until element),
«E while B» (while element),

where in all three cases the E’s denote arbitrary arithmetic expressions,

B represents a Boolean expression, and «while», «until», and «step»
are basic symbols of the language.

30.2.4. Syntactic diagram:

arithmetic arithmelic arithmetic
O——1{ EXDression step expression expression ——
(cr19.6) (cr19.6.) (cf 79.6)
Boolean
expression
(cF19.6.)
for-list
element

Ot for-1ist element

(")
N

mple ‘abl ;
S O AT e @

o——1 for-clause |- statement (cf 22.2) '\ for- statement |
Fig. 26

30.3. Semantics

30.3.1. Static for-statements. A for-statement is called static if the follow-
ing conditions hold:

a) None of the expressions E, E;, E,, E; occurring in for-list elements
depend explicitly or implicitly on the controlled variable V.

86 IV. Statements

b) The controlled statement S contains no operations that might
change the value of ¥ or of any of the expressions E, E, E,, E,.

¢) None of the for-list elements is a while element.

Under these conditions, which hold for most for-statements occurring
in practice, the execution of a for-statement may be described as follows
(see, however, 30.3.4 and 30.3.5 below):

30.3.2. The simplified rule for static for-statements.

First, an ordered set P of values R;, R,, ..., R,, (of the same type
as the controlled variable) is generated. Every for-list element contributes
to this set as follows (the contributions are lined up in the order in
which the for-list elements appear):

a) A single expression element «E» contributes the current value
of the expression E.

b) A step-until element «E, step E, until E;» contributes the
linear sequence running from E; with increment E, up to at most
E; (not exceeding this value in the direction of the increment). How-
ever, if E;and E,—E, have the same sign, the contribution of the step-
until element is empty.

Second, the values of the set P are assigned one after the other to
the controlled variable V, and for every value of V the controlled state-
ment S is executed once. If P is empty, no execution of S takes place,
i.e. the for-statement is then equivalent to a dummy statement.

Third, if during one of the executions of the controlled statement a
jump to a destination label outside (or in front of) the for-statement
takes place, then the execution of the for-statement is terminated (so-
called termination by a jump).

Fourth, if the controlled statement has been executed for the last
value of the set P, or if P is empty, the execution of the for-statement
terminates in a natural way, which we shall refer to as fermination by
exhaustion of the for-list.

30.3.3. The dynamic rule. Though not recommended, it is permissible
that during execution of a for-statement dynamic effects such as changing
the value of the controlled variable occur, e.g.

«for x := 0 step 0.1 until 30.05 do
begin
ify< 10 then x := x+0.02 ;

end >;,
or that the controlled variable enters explicitly into the for-list elements,

©8 «for z:=1 step z until 200000 + sgr¢(z) do ...».

§20. The For-Statement 87

In all such cases, and in any case where while elements are involved,
the precise rule given in 4.6 of the RAR applies. This rule may be
pictured as follows (with the same meaning of V, S, E, etc. as in 30.2):

@ lhe next for-list element is a
single expression element step-until element while element

7=7

No end
of for—>—2 Vi undetined F—@)
Ust 2
Fig. 27

Upon arrival at w, the execution of the for-statement is ferminated
by exhaustion of the for-list. Besides this, it can also be ferminated by a
jump, as mentioned in 30.3.2 above.

30.3.4. Value of the controlled variable afier termination. The following
rule applies both to the static as well as to the dynamic case:

a) If the execution of a for-statement terminates by exhaustion of
the for-list, the value of the controlled variable is undefined afterwards.

b) If the execution of a for-statement terminates by a jump, then the
controlled variable retains the value which it had immediately before
the jump, provided the destination of the jump is not outside the scope
of the controlled variable (for scope cf. § 42).

These two cases may be exemplified as follows:

«for k:=1 step 1 until » do Here the computation continues

if x[%] ==y [k] then goto may ; |if the vectors x, y agree complete-

z[kR]:=0; ly. The value of % is undefinedand

: the statement z[k] := 0 is incor-
rect.

Continuation if the vectors x, y
are different. The value of % is de-
fined and the statement z[k] := 1
is correct.

may: z2[k] =1 ;

»

88 IV. Statements

30.3.5. Jumps into a for-statement. No jumps from outside into a for-
statement are allowed; in other words, the effect of a goto-statement
located outside the for-statement, but whose destination is within or in
front of the controlled statement, is undefined.

30.4. For-statements and conditional statements

According to the syntax, conditional statements may appear without
restrictions as controlled statements of for-statements, but according to
29.2 only the last alternative of an if-else-statement may be a for-state-
ment. Thus

«for ... doif ... then ... else if ... then ... else ...»,
«for ... do if ... then ...»,

«if ... thenfor ... do ...»,

«if ... then ... else for ... do ...»

are all permissible constructions, but

«if ... thenfor ... do ... else ...»

is prohibited by the RAR, namely for the following reasons:

In the original ALGOL-60 report [6] of 1960 there was no such rule
restricting the use of for-statements as alternatives of if-else-statements;
moreover the report did not state whether the example

«if ... then for ... do if ... then ... else ...» (1)

should be interpreted as an if-statement equivalent to

«if ... then begin for ... do if ... then ... else ... end» (2)
| |l]
for-clause if-else-statement
| | | |
if-clause alternative of if-statement

or as an if-else-statement equivalent to

«if ... then begin for ... do if ... then ... end else ...» (3)
| I |
for-clause if-statement
| i I L
if-clause 1-st alternative 2-nd
alternative

According to the RAR, however, a for-statement cannot be an alter-
native of an if-else-statement (except the last one), and therefore ex-
ample (1) now allows only the unique interpretation (2).

§30. The For-Statement 89

30.5. Consequences drawn from the semantic rules

30.5.1. Influence of roundoff errors. If a controlled variable is of type
real, then the computer limitations (cf. 8.2) with regard to real-type
variables must be observed. Thus the value of a real-type controlled
variable will usually deviate by a small amount from the theoretically
expected course, which may have severe and unexpected consequences
with respect to the termination of the for-statement. For instance, one
would expect that the statement (x declared real)

«for x:= 0 step 0.01 until 0.99 do y:= y+0.01 Xf(x,y)»,

would cause execution of the controlled statement for ¥x=0, 0.01, 0.02,
..., 0.98, 0.99 and thus integrate — by EULER’s method — the differential
equation y'=f(x,) from 0 to 1. However, since the %’s are computed
numerically and are thus inherently inaccurate, it cannot be predicted
— in fact, it depends on the kind of computer to be used — whether in
this example

a) instead of xy9=0.99 a slightly larger value results and therefore
the last execution occurs with %g==0.98 (approximately), or

b) the value xyy remains slightly below 0.99; in that case the last
execution occurs as expected with the value x= x,,.

Of course such ambiguities cannot be tolerated in an ALGOL program
and must be avoided by programming measures. In the above example
one could force an unambiguous decision either by choosing the upper
bound between two meshpoints, e.g.

«for x := 0 step 0.01 until 0.995 do vy := v+ 0.01 Xf(x, y)»,

or by introducing an integer-type controlled variable which counts the
number of repetitions (Note that an integer-type controlled variable is
stepped precisely):

«for k:= 0 step 1 until 99 do y:= y+0.01 X7 (k/100, y)>».
Another example where roundoff errors are rather disturbing, is:

«for x := 1.570796326 step ;,—12 until 1.570796327 do print(cos(x))».

Indeed, here the increment is so small that on certain computers it gives
no contribution if added to x; as a consequence, a closed loop will result.
But even if there is no danger of a closed loop, it is recommended to
diminish the influence of roundoff errors by rewriting this statement as

«for k£ := 0 step 1 until 1000 do print(cos(1.570796326+ &/1412)) ».

90 IV. Statements

30.5.2. Empty for-list elements. In certain circumstances a for-list element
is empty and does not cause an execution of the controlled statement.
According to the rules given in 30.3 this will occur

a) if a step-until element is encountered with

either E,>FE, and E,>0,
or E,<E; and E,;<0.

b) if a while element is taken up in which the first evaluation of the
Boolean expression B already yields the value false.

If all for-list elements of a for-statement are empty, we speak of an
empty for-statement. Its for-list is exhausted already before the first
execution of S takes placel. The execution of such an empty for-state-
ment has no other effect than giving the controlled variable the value
“undefined”.

30.5.3. Applications. The empty for-list element proves to be a very
useful concept for many numerical methods. Consider, for instance, the

n

. a, .

summation Z T—f? . It can be expressed in ALGOL by
E=1
4

«s:=20;
for k:=1 step 1 until j —1, j +1 step 1 until » do
s:=s+alk]/(j—E)».

Here % runs from 1 through j—1 and then from j 41 through #, i.e.
from 1 through # with the exception of £=j. This is also true for j =1
and £=n; indeed, for j =1 the first for-list element is actually 1 step 1
until 0 and is therefore empty, while the second for-list element makes
the summation from 2 to #.

A further example is the backsubstitution of the Gauss elimination
process:

«for k:= n step —1 until 1 do
begin
zz: fori:= k+1 step 1 until » do x[k] := x[k]+a[k, ¢] xx[7] ;
x[k] := — x[k][a[k, k]
end».

The inner for-statement (statement 22) is empty for the first execution
(k= n) of the outer controlled statement ; accordingly, the whole example
causes execution of the following operations:

1 This means that in ArGcoL the jump-out condition of a for-statement is
checked at the beginning of a loop. Since this is different in FORTRAN, transcrip-
tion from ArGcoL to FORTRAN must be done with special consideration of possible
empty for-list elements.

§30. The For-Statement 91

contributed by
«x[n]:=—x[n]ja[n, n] ; k=n
x[mn—1]:=2xn—1]+an—1,n]xx[n] ; } b1
xn—1]:=—xn—1]faln—1,n—1]; -

x[n—2]:=x[n—2]+a[n—2,n—1]xx[n—1]; }
x[n—2]:=xn—2]+an—2,n]xXx[n]; k=n—2
xn—2]:=—2x[n—2]a[n—2,n—2];

etc.
x[1]:=—=x[1]/a[1,1] ;».

30.5.4. Jumps inside a for-statement. While the effect of jumps from
inside a controlled statement to the outside and vice versa have been
dealt with in 30.3, it remains to discuss the effect of goto-statements
whose source and destination are within the same controlled statement.
Of course this follows directly from the rules given in 30.3, but will be
demonstrated again by the following example:

«for m := — 5 step 2 until 5 do
ra: begin
switch abcd := ra, rb, vc,vd ;

vb: thetc.t 1= exp(m) ;
gofo abed (7] ;

rc: end m».

For =1, the statement «goto abcd[j]» causes a jump to ra with the
effect that the controlled statement is re-entered without advancing the
value of m and without checking for termination. For /=2, a jump to
rb occurs, which produces a little loop inside the controlled statement,
of course also without advancing m. For =3, however, a jump to 7c
occurs which terminates the present execution of the controlled statement
and starts the next execution (with the next value of m), provided the
for-list is not yet exhausted.

30.5.5. Applications of the while element. Whereas the step-until element
serves to repeat the execution of the controlled statement for a strictly
linear sequence, the while element was designed to allow for arbitrary
stepping of the controlled variable and other dynamic effects. Consider
for instance (cf. 31.3):

«for power := 2,2 X power while power<,,6 do begin ... end».

Here the controlled statement is executed exactly 19 times, namely once
for every one of the values power = 2, 4, 8, 16, ..., 524288.

92 IV. Statements

A further example: The bisection method.

«for x:= (a+0b)/2 while b—a>eps do
if f(x)<Othena:=xelse b:= x».

Given an interval a<<x<(b and a continuous function f(x) with the
property f(a)<<0, f(b)>0, this statement computes a new interval (i.e.
new values &, b) of length at most eps, such that again /()<< 0, f(b)=0.
The value of eps can be prescribed; however, for too small eps, a closed
loop may result unless we extend the jump-out condition of the while
element to «b—a>epsAx=alx+=b».

Thus, undoubtedly, the while element allows a more condensed and
elegant description of certain computing processes. However, this must
be paid for by a loss of clarity, and therefore a too extensive use of this
instrument is not recommended.

30.6. Efficiency considerations

For-statements contribute heavily to the total computing time of
ArcoL programs. This is especially true if for-statements are nested; in
such cases, obviously the innermost loops (e.g. controlled statement 2 in
example 30.1.3) contribute heaviest. As a consequence the programmer
should keep time-consuming operations out of innermost loops whenever
possible. Often this cannot be achieved, but sometimes a rearrangement
of the running subscripts may help.

30.6.1. In the summation process

«s:=0;
for i :=1 step 1 until #» do
for j:=1 step 1 until 7 do
for %z :=j step 1 until 7 do
si=s+7(1) xg(f, k)»

the computing time is roughly on the order of #3/6 times the evaluation
time for the two function designators f(7, /) and g (4, k). Obviously this
piece of program becomes more efficient if we take the function de-
signator f(, 7) out of the innermost loop:

«s:=0;
for ::=1 step 1 until » do
for j:=1 step 1 until 7 do
begin
fii = 16,9) ;
for k:= 4 step 1 until s do s:= s+ /if xg(j, k)
end ¢ and §».

§ 30. The For-Statement 93

If the evaluation time is much greater for g than for f, this modification
offers not much of a saving; in this case, it would be better to rearrange
the hierarchy of the subscripts 7, 7, £: We note that they must meet the
condition §< 2=+ but otherwise may run arbitrarily from 1 to ». Hence

«s:=0;
for j:=1 step 1 until » do
for 2 :=j step 1 until » do

begin

gik:=g(j, k) ;

for i:= k step 1 until » do s:= s+ gjk Xf (s,])
end § and k»

is a valid rearrangement which reduces the computing time to about
73/6 evaluations of f plus #2?/2 evaluations of g.

30.6.2. Similarly, where conditional elements appear in a controlled
statement, it should be attempted to delegate as much of the checking
as possible to the outer loops. As an example,

«for i:= 2 step 1 until » do
for j:= 1 step 1 untili—1 do
ifa[i—7]>0Aa[{]<0 then c[i, {] := false»

can be rewritten less elegantly but in general more efficiently as

«for j:=1 step 1 until »—1 do
if a[j]1<<0 then
for ::= 441 step 1 until » do
if a[¢ —7]>0 then c[7, j] := false»,

or, by introducing a new variable k=7 —7:

«for k:=1 step 1 until #—1 do
if a[k]>0 then
for j:=1 step 1 until » —% do
if a[7]<< 0 then c[k+7, 7] := false».

Of course, the saving achieved in the above example depends heavily
upon the relative frequencies of the fulfilled conditions, a[£]>0 and
a[7]< 0, which are encountered during the process.

30.6.3. Quite often the efficiency of loops can be improved just by
choosing other subscripts, i.e. by performing an affine transformation in
the “‘subscript space”. Consider, for instance, the statement

«for i: = 1 step 1 until » do
forj:=1+1 step 1 until n do p[j—1i]:=a[j—1,1i]»,

94 IV. Statements

which, by introducing a new variable k=4 —¢, can be rewritten as

«for i := 1 step 1 until » do
for k:=1 step 1 until u—7< do p[k] := a[k, i]».

In doing so we have eliminated the evaluation of the subscript expressions
7 —#in the inner loop. Of course this gives only a very slight improvement
here, but it may serve to indicate what might be done in less trivial
situations.

30.6.4. Let us consider example 30.1.4, which computes the components
¢[4] of the product matrix X vector serially. It would seem that we could
just as well compute these components also in parallel, namely by

«for j:=1 step 1 until z do ¢[j]:=0;
for j:=1 step 1 until » do
for i:=1 step 1 until » do c[¢]:=c[s]+a[s, j] xb[1]».

Indeed, the number and kinds of operations involved are the same in
both cases; all the same, the version given in 30.1.4 is preferable for the
following reason: If one would like to economize the summation over §
with a code procedure (cf. 47.4), this can be achieved only if this sum-
mation is carried out as an unbroken process:

«[i]:=0;
for j:= 1 step 1 until » do (4)
c[i]:=c[i]+ali] xb[f]».

Indeed, an important part of the economisation is the elimination of the
repeated storage reference to c[7], which causes a value to be put into
storage and then read again from storage immediately afterwards. In an
optimized code procedure for performing the task (4), the partial sums
would be kept in the accumulator (which would not be possible for
parallel summation), and only the final sum would be stored as ¢[7].

30.6.5. Finally, we observe that the statement

«for j:=1 step 1 until upper do ...»,

where upper is a function procedure without formal operands, is some-
what uneconomical. Indeed, the test for termination, hence the evalua-
tion of the function designator «uppery, is performed for every 7. If the
order of § is irrelevant, we can write

«for j:= upper step —1 until 1 do ...»

instead, in which case «upper» is evaluated only once.

Chapter V

Miscellaneous Applications

We have now collected sufficient material so that we can give some-
what more complicated examples selected from various fields of applica-
tions. However, since declarations still have not been treated, these ex-
amples cannot be presented as complete ALGOL programs but rather as
program fragments, beginning at a point where all declarations have
been given and all input operations have been performed, and ending
at a point where the results are ready for output. Furthermore, these
examples, though correct in principle, are not sufficiently foolproof for
actual use. In the following this will be understood without further
mentioning.

§ 31. Algebraic Problems

31.1. Gauss elimination

The elementary process of Gauss! for solving A 3?—{—?;: 0 consists of
3 parts, namely 1) the elimination proper, which means splitting the
matrix A into two triangular factors B, C; 2) the forward substitution,

i.e. the operation 7 := C ‘1Z_): and 3) the backsubstitution, i.e. the operation
% :=—B17.

It has been found convenient to organize the elimination in such a
way that the matrices B and C are stored together as the BC-matrix
in the same place as 4 ; the latter is therefore overwritten by the process.
Accordingly, in our program the «[7, k], while initially being elements
of A, are later elements of B or C, depending upon whether i<k or ¢>%.
Similarly, all 3 vectors Z, 7, 7% are stored as one and the same array
s[1:#]: at the beginning the s[¢] must be given as the constant terms
by, ..., b, of the system; after the elimination they are the vector 7, and
at the very end the s[1], s[2], ..., s[#] are the solution x,, x,, ..., x,,.

If step 2) is incorporated into step 1), the following program fragment
(which, however, does not search for pivots) is obtained:

«begin
for j:=1 step 1 until —1 do
for i:=j+1 step 1 until » do

1 See § 6 in [44].

96 V. Miscellaneous Applications

elim: begin

cl: ali,f]:= —als,qllal[].1]; Elimination of #; from
for k:= j+1 step 1 until » do i-th equation by adding
ali, k] :=a[s, k]+a[s,7] Xa[j, k] ;| appropriate multiple of
s[1):= s[]+a[4, 7] xs[f] -th equation to the i-th.
end elim ;
back:
for k:= n step —1 until 1 do
begin
z3: for i:= k-1 step 1 until # do Computes #,=s [#] from
s[k] :=s[k]+alk, 1] xs[d] ; the £-th equation of the
c2: s[k] := —s[k]/alk, k] triangular system
end back ; BZ +7=o0.
end».

In this elimination scheme all a[3, k] with 4, k2>7 are modified in
the j-th elimination step by adding the product a[3, j] Xa[j, &]. In con-
trast to this, T. BANacHIEWICZ (cf. [44], § 6.2) postpones all operations
upon a[7, k] until j=msn (¢, k) — 1, but then adds all products at once
to a[i, k], i.e. performs the operation

aft, k) :=ali, k] +ali, 1] Xa[1, k] +ali, 2] Xa[2, k] +--.
+ali,f] xall k],

where [=min (3, k) — 1. Moreover, if k<4, a[, k] is divided by —a[Z, k]
(in the above program this operation would be performed in the next
elimination step by statement c1I).

The Banachiewicz scheme requires a complete change in the hierarchy
of the i-, /- and k-loops: First we let 4, & run through all matrix positions,
and for every ¢, k all operations upon a[f, k] are performed (the constant
terms are treated similarly):

«begin
for i :=2 step 1 until » do
begin
for k:=1 step 1 until » do
begin
l:=ifi>kthenk—1elses—1;
t:=ali, k] ;)
sum: for j:=1 step 1 until / do Zgz?g?zsk].

t:=t+ali,f]xalf, k] ;
a[i, k] := if k<ithen —{/a[k, k] else? ;
end % ;

§31. Algebraic Problems 97

forj:=1 step 1 untili—1 do operations
s[i]:= s[i] +afs, 7] xs[] ; }uwmswl
end ;
comment Backsubstitution is the same as before ;».

The Banachiewicz scheme has the advantage that it allows economizing
the inner product loop (statement sum) with the aid of code procedures
(cf. 47.4); on the other hand, pivot strategy is much more complicated
than for the original Gauss scheme.

31.2. Newton’s method for algebraic equations

For given values of the coefficients 4[0], a[1], ..., a[n] of a poly-
nomial f(x) = Y a[k] #* and with a given initial value x (preferably close

to a root) the following piece of program attempts to compute a root:

«begin
rep: fi=g:=0;
horn: for k:=n step —1 until 0 do
begin
gr=gxa+f;
fi=fxx+alk]
end ;
delta:= —flg ;
%= x--delta ;
if abs (delta) > eps then goto rep
end».

The for-statement labelled korn computes the value f and the derivative g
of f(x) at x; indeed, for each & we have (after termination of the con-
trolled statement)
f=2alild™" g=X(—Ralla"
=

j=k
as may be verified by induction.

We note in passing that the termination criterion of the above piece
of program by no means meets the requirements of computing practice
because it is usually impossible to give an a priori value ¢ps such that
the jump back to rep occurs just as long as this is both necessary and
meaningful. Indeed, a too small eps tends to cause a closed loop with x
jumping around the root in an erratic manner, whereas a too big eps
discontinues the process while it is still capable of improving the ap-
proximation of x. In §36 we shall develop a program which does not
exhibit this kind of behavior.

7 Rutishauser, Description of ALGoL 60

98 V. Miscellaneous Applications

31.3. The Dandelin-Graeffe method

The basic idea of this method is to transform a given polynomial f(x)
into one whose roots are the squares of the former and to repeat this
process until a polynomial is obtained, the roots of which are so strongly
separated that they are practically the quotients of consecutive coef-
ficients (e.g. the roots of x*—10%0x3+10%%%—107x+4102°=0 are ap-
proximately 10%, 103, 10719, 10759).

The roots 7; of the original equation are then the 2*-th roots of the
zeros of the last polynomial if % root-squaring steps have been needed
to obtain it. Complex roots are more difficult to compute with this
method; only their moduli are obtained easily. One root-squaring step,
i.e. the step from

Zak(—x)k=ann(x_ri) to Zbk(_x)k=bnn(x_712)
k i k [

is, as an example, described for #=6 by the following formulae

by = a?

by =a2 —2aya,

by=a2—2a,a;+2aya,

by=at —2a,a,+2a,a;— 2aqa, (1)
by=as —2ay a5+ 2aya,

by = at —2a, a4

be=aZ.

Afterwards the b; are again denoted by a; and the process is repeated.
It can be stopped as soon as in the computation of ; the other terms
become negligible with respect to 4, and this for all 7. If this happens
for only one 4, this is recorded by setting the j-th component of a Boolean
vector sep to true and means that we could split the equations into
one with roots #, #;, ..., 7; and one with 7, ., 7.5, ...,7,. If sep[j —1]
and sep[7] are both true, we can compute the modulus of one root #;
and reduce the order of the equations by one. These measures are in-
cluded in the following program, but it does not contain measures against
the very small and very large numbers which usually occur with this
method and threaten to discontinue the process by overflow of the
exponent?,

«for power := 2, 2 X power while power < ,,6 do
begin
comment follows one root-squaring step as indicated by formulae (1);
for j:= 0 step 1 until » do

1 A Graeffe-like method which avoids the occurrence of very small and very
large numbers has been described by Grau [16].

§31. Algebraic Problems 99

begin

bl:=0b[f]:=aljl12;
sep[f] := true ;

Si=—2;
for i:=1 step 1 until (ifj>#» —j then n—7 else j) do
begin
B[] := blj]+sxalj—i]Xalj+i] ;
si=—5;
sep[f]:= sep[f] A (b1=>b[}))
end:
endg ;

for k:=0 step 1 until #» do a[k] := b[k] ;
comment follows reduction of equation, if consecutive sep’s are true.
7 counts eliminated coefficients ;
1:=0;
quot:=1 ;
reduce:
for z:=1 step 1 until » do
if sep [k — 1] Asep[k] then
begin
mod[n—1i]:=alk—1]/a[k] ;
quot 1= quot Xmod [n —1] ;
mod [n—1) 1= exp (In (mod [n — i])[power) ;
ti=14+1
end
else
if =0 then a[k — 7] := quot X a[k] ;
ni=mn—1
end power».

We observe that statement reduce would transform the situation

n=06, p=732, a[0:n] = (1, 1950, 1960, 1070, 1060, 1925, 1),

sep[0:n] = (true, true, false, true, true, false, true)
into

n=4, a [O.n] = (1, 1010, 1020, 10_15, 10‘—'40)
and produces the moduli of two roots:

mod [6] — 10—1.5625, mod [5] — 100.3125.

31.4. The stability criterion of Routh

The following compound statement decides, for given coefficients a [£]

of a polynomial) a,#*, whether all its roots have negative real parts
0

7‘

100 V. Miscellaneous Applications

(in which case it produces the logical value stable = true) or not (in
which case stable = false).

If the computation is done by hand, it is recommended (viz. Zur-
MUEHL [43], p. 82/83) to arrange the principal minors of the Hurwitz
determinant in a Routh-table (e.g. for even #):

Ay Ay Ay g a,_, a,

a az as Ay a, , 0

by by, by bg b, 0

€3 €3 € Cg ...Cu1 0 0

dy dg dg dyy...d, 0 O
etc.

The present program reflects the staircase shape of the Routh-table,
but all quantities 4, b, ¢;, 4, ... for the same % are stored as the same
component a[k] of an array a. This is possible since e.g. b4 is no longer
needed as soon as dg has been computed.

«begin
stable : = false ;
forj:=0step 1 untiln—1 do
begin
if a[0] Xa[j +1] =0 then goto ex ;
ci=—affljalj +1] ;
for k:=7+2 step 2 until n —1 do a[k] := a[k]+cxa[k+1]
end ;
stable : = true ;
ex:
end».

§ 32. Interpolation and Numerical Quadrature

32.1. Neville-Lagrange interpolation

Let a polynomial of degree » be defined by two vectors a[0:#],
b[0:#] representing the coordinates of # 1 points on the curve y=7(x).
We have many methods to compute the value of f at x, one of them
being NEVILLE’s scheme [24], which is based on a relation between all
polynomials f;(x), where f;,(x) is of order j —4 and defined by f;;(a[%])
=b[k] for k=14,i+1,...,7—1,7.

Indeed, if we introduce the values y; ,=f;;(%) (1,7=1,2,...,%;
1=<7), then

a) Ypp=0b[k] (k=0,1,...,n),

x—alf] ..
b) 3ii=Yer,i+ Gim ey Wit i— Vi) (forall, i i),

¢) f=2y,,n1s the required value f(x).

§32. Interpolation and Numerical Quadrature 101

In our program y; ; will be denoted by y[f] since y;_; ; is no longer
needed after y; ; has been computed.

«begin
for j:=0 step 1 until n do y[j]:=8[7] ;

aa: for k:=1 step 1 until z do

bb: for j:=n step —1 until % do

co: y[i]:= y [+ (x—ali]) X (7 [[1—y G—1D/ @[/ —alj—E]) ;
f:=y[n]

end».

If the values y; ; are arranged in a Neville-table

Yo,0

Yo,1
Y11 Yo, 2

V1,2 Yo,3
Ve, 2 V1,3

Y23 Y,a . _
?,3,3 . :},2,4 : . yo,n“‘f

yn,n

then every execution of the for-statement b (controlled statement of aa)
causes generation of a new column of this table, namely the one contain-
ing the values ¥ [f]=y,;_; (1=F, k+1,...,n). At the end, the array
y[0:n] contains the top row of the Neville table, and in particular y [#]
is the required value 7(x).

Another method to interpolate with the same given data is the
barycentric formula', for which we obtain the following program:

«begin
weights:
for j:= 0 step 1 until » do
begin
comment prepare weight w [j]=1/product (over 2 #7) of (a[j] —a[Z]) ;
wlf]:=1;
for k:=0 step 1 until j —1, 7+1 step 1 until » do
wlf]:=w[]/(a[f] —a[k)
end ;
evaluate:
s:=1:=0,
for k.= 0 step 1 until » do

1'W. J. TavLor [37].

102 V. Miscellaneous Applications

begin
comment add one new term to each numerator and denominator of
barycentric formula ;

d:=zx—alk];
ifd=0thend:=,,—30;
s:=s+b[k]xwk]/d ;
t:=t+wlk]/d

end % ;

fi=sft

end».

This program, though considerably longer than that for NEVILLE'S
method, is more economical if the same polynomial must be evaluated
frequently or if different polynomials, given at the same abscissae a [£],
must be interpolated. Indeed, for-statement wesghts, which is the only
part which requires a computing time on the order of O (#?), depends
neither upon the b[%] nor upon x and therefore can be executed once
and for all as long as the a[%] do not change. All later interpolations for
the same a’s can be done by a jump to evaluate and require only a
computing time of order O(»). This compares favorably to NEVILLE'S
method, which always requires a computing time on the order of O (#?).

We note in passing that for large # the multiplication of the many
small differences a[j]— a[k] may cause an underflow of the exponent;
this may require special countermeasures.

32.2. Hermite interpolation with equidistant abscissae

The virtues of Hermite interpolation (function given not only by
values but also by first derivatives at the mesh-points) are too well
known to require further discussion. Let ¥, and y; be the given values
of f(x) and f'(x) at x,=x0+kXh (k=0,1, #n). Then the value of
the Hermite interpolation polynomial H(x) of order 2n+1 at x can be
expressed in our specialisation by the following barycentric type of

formulal:
Z{v—k)* k)}”‘”z i
H(x) = A 5, (1)
,;,{ ot o)
where

a4=(3)n r=G—s)h,

B, =241(@u—r— @1
1 See KunTzmMAaNN [23], p. 169ff.

§ 32. Interpolation and Numerical Quadrature 103
with
1 1 1
Gp=1t5+5 T

This leads to the following program (yI[k] representing y;):

«begin
Phi[0]:=0;
for 2 :=1 step 1 until » do phi[k] := phi[k—1]+1/k ;
S:i=1:=0;
wi:=1;
zi=(x—x0)/h ;
for £ := 0 step 1 until » do
begin

if z— =0 then begin bigh:= y[%] ; goto ex end ;
comment add one further term to both numerator s and denominator ¢
of barycentric formula (1) ;
ri=1[/(z—k)}2—2X (phi[k] — phi[n—R])[(z—F) ;
si= s+ wx(rxy [kl +hxyl[R)/(z—R)) ;

ti=t+wXr;
wi=wX(n—k)12/(k+1)12 ;
end % ;
bigh:= st ;
ex:
end».

32.3. Newton interpolation in an equidistant table

Let a[0:bign] be an array representing an extended table of a func-
tion f(x), such that a[%] is the value of f at x,=x0+ % XA, where x0
and 4 are also given. It would be uneconomical and numerically unstable
to evaluate the full interpolation polynomial of order dign for a given x.
Instead we compute f(x) by Newton-Gregory interpolation from the
values of f at eight of the abscissae x;, four on either side of the given x.
This implies 1) selection of proper abscissae x, through ., ,, i.e. com-
putation of % (statement sel), 2) building the difference table for the
values a[k] through a[k+7] (statement dif), and 3) evaluation of the
Newton-Gregory formula (statement eva):

«begin
t:=(x—x0)/h ;
sel: k:=if t< 3.5 then 0 else if > bign —3.5 then
bign — 7 else entier () —3 ;
bi=1t—k;
fori:= 0 step 1 until 7do y[¢{]:=a[k+1];

104 V. Miscellaneous Applications

dif: for i:=1 step 1 until 7 do
forj:=7step —1untilido y[f]:=y[j]—y[—1];
fi=y171;
eva: fori:=6step —1 untilodo f:=fXx(—14)/(F41)+y[7]
end».

32.4. Romberg Quadrature

b
The Romberg method for computing [f(x)dx has become known

through a number of recent papers!. Its main feature is the T-table

TP
7o
Tél) T2(0)
T{l) Ta(O)
e I

which in fact is a Neville scheme (for x=0) of a function T'(x) given by
the values T(4~%)=T{® (= trapezoidal values for subdivision of the
quadrature interval into 2* equal parts). The Neville formula reduces
in this case to

4m ngf) _ Trﬁ:kl-l

B
= 4m ’

which together with the evaluation of the T® yields the following
program (it is assumed that f(x) is a function designator which produces
the value of the integrand f at x):

«begin
ni=1;
£[0] := (b—a)[2x (f(a) +1(0)) ;
for k:=1 step 1 until m do

begin
ni=2Xn,;
h:=0b—a)ln;
pi=4,;
s:=0

accu: for i:=1 step 2 until » do Evaluation of
.— y . valuation o
si=s+fa+iXh) ; trapezoidal rule.
t[R] :=t[k—1][24sXh ;

1 See for instance BAUER, RUTISHAUSER, STIEFEL [8].

§32. Interpolation and Numerical Quadrature 105

for j:=%k—1 step —1 until 0 do

begin Romberg step for
]:= (pxeli+1]—¢[]/(p—1); {computing new anti-
pi=4Xp diagonal of T-table.
end
end % ;
int 1=t[0]

end»

The structure of this program is slightly different from the Neville
program given in 32.1. Indeed, here it is natural to compute the
TP, TM, TP, ... etc. in this order and then to compute immediately
after every T{¥ the values T*~V, T*=3, ..., T|%, where T}, appears
in our program as ¢[f]. With the ALGOL notations the T-table will there-
fore appear as follows:

t[0] computed for k=1,

computed for k=2,
¢[1] t[O]/ computed for k=13, etc.
t[1] o< ’
t[2] t[1] t[0]
t[2] £[1] :
t[3] :

Unfortunately this program has — like most other programs for
RoMmBERG’S method published heretofore — very poor properties with
respect to accumulation of roundoff errors. To improve this situation,
we could replace the for-statement accu, which is responsible for this
imperfection, with the following compound statement, which avoids too
frequent additions of small terms to a large partial sum. Indeed, state-
ment f0 accumulates at most 16 terms of the trapezoidal sum, while
statement f7 collects the contributions of at most 16 such presummations,
and finally statement /2 accumulates all terms produced by statement f1.

«begin
#n0 1= if n>32 then 32 else » ;
nl:= if n> 512 then 512 else # ;
f2: for k2:=1 step 512 until » do
begin
s1:=0;
/: for k1:= k2 step 32 until 22+4+n1—1 do
begin
s0:=0;

106 V. Miscellaneous Applications

f0: for k0 := k1 step 2 until 21+4-1n0—1 do
s0:=s0+f(a+hXk0) ;
s1:=s0+s1
end k1 ;
s:=s-+sl
end 22 ;
end».

§ 33. Numerical Integration of Differential Equations

33.1. Runge-Kutta method, Nystroem modification

An advantageous method for integrating ordinary differential equa-
tions numerically is the Runge-Kutta method [17]. The following piece
of program corresponds to a modification given by NYSTROEM [25] which
integrates directly differential equations of second order:

Let y"=f(x, y, »') be the differential equation, x, y, ¥1 the given
initial values x, ¥ (x) and y’(x), » the length of the integration step and
the number of such steps to be performed. It is assumed that /(x, v, ¥1)
is a function designator which produces the value of the second derivative
(¥2 in our program) for given argument x, function value y and deriv-
ative y1.

Like the classic Runge-Kutta method, the Nystroem algorithm also
uses three auxiliary points 4, B, C within the integration step from x,
to #,,.,. The values y, ', " at those places are denoted by ya, vb, yc,
yal, ybl, ycl, ya2, yb2, yc2, whereas the corresponding values at the
meshpoints proper are denoted by y, y1, y2.

y=z[k+]
Ya Y%
y-z[k] iyl;
z, z,* h/2 Zth

Fig. 28

§33. Numerical Integration of Differential Equations 107

«for k:=1 step 1 until do
begin
2 =f(x:y:y1) ,
x:=x+h/2;
ya =y+hxyl2+h}t2xy2/8 ;
yal:=y1+hxy2|2
ya2:=f(x, ya, yal) ;

ol |
e |
|

Auxiliary
point 4.

Auxiliary

ybl := yI1+hXya22 ; point B.

yb2 1= [(x, yb, ybI) ;
x:=x+h[2;

ye 1=y+hxXyl+hrt2Xyb2[2 ;

yel :=yI4+hxyb2 ;

ye2 1= f(x, yec, yel) ;

z[k] :=y = y+hXyIl+ 12X (y2+yal+ yb2)[6 }Completionof

Auxiliary
point C.

21 [k] =Y 1:= =) 1+ integration
+hX(y24+2Xya2+2Xyb2+ ycd)[6 ; step.
end».

After termination the values of y, ¥’ at all meshpoints x4+ kx4
(k=1, 2, ..., p) are available as components of the arrays z[1:p] and

2I[1:p].
33.2. The Adams-Bashforth method

The problem is to integrate y'=f(x, y) by the Adams extrapolation
method of order ¢ (open g+1 point formula) over 7 steps of length 4,
whereby the initial values x;, ¥ (x,) =23, are given. First we must inte-
grate over ¢ —1 steps by some other method (e.g. RUNGE-KuUTT4) in
order to obtain the necessary starting values x, ;, ¥, 1, ¥s—1, Ys—2,
...y ¥1, ¥ (in fact, we shall assume that these values are given at the
beginning as x, ¥, z[g—1], 2[¢—2], ..., 2[1], 2[0]). Then we can con-
tinue with the recursion formula

yk=yk-—1+hx(coy;e—1+cly;c—2+"'cq—ly;c—q) (k=9,9+1:~-:7)~ (1)

In this formula the ¢’s are fixed for given ¢ and can be generated
prior to the integration with the aid of the generating function

Z bt* = —t|(1—) xIn(1—1)),
and

Zb,, 1— o)t cht"

108 V. Miscellaneous Applications

The recursion formula (1) is easily programmed for a computer; how-
ever, the storage of the derivatives y; (¢=g¢,¢+1,...,7), which are
produced by the process and for which at any time the last ¢ must be
available, presents a problem:

If the y;_; are stored as z[g—7], as (1) would suggest, we would
have to shift them by one storage place whenever % is increased; this
saves storage but wastes time. If the y; are stored as z[7] for all 4, we
need not shift them but hereby waste storage space in a way which
becomes prohibitive if a system of differential equations is to be inte-
grated by the same method. We therefore decide to store the y_;
cyclically, namely y;_; as z[¢], where 0<¢<¢ and i=k—7 (mod g).
There is a little inconvenience with this scheme insofar as the summation
loop for evaluating (1) is split into two loops, but even this can be
avoided at the expense of storing the coefficients c; twice, namely ¢; as
¢[#] and at the same time as c¢[¢+¢] (=0, 1, ..., ¢—1). This is shown
by the following confrontation of ordinary versus ALGOL notation for
the factors appearing in the terms of (1) (Note that p=%—1 (mod ¢)):

ordi- {% Cp_1 - Co |C—1 -+ Cpra Cpr1

nary \Yi—p-1 Yi-p ---Yh-2 Yi-1|Vh—q -+ Yiop-3 YVi-p—2

uson, (L) CLpba—t] lgti] ol | ela—t]. lp42) clp 1]
sf0] zlt] ...2[p—1] 2[p]| 2[p+1]. 2[g—2] 2[g—1]

Applying these ideas to a system of differential equations, which we
assume to be defined by a procedure egu such that a call «equ (%, y,)

res: (f)» produces the derivatives z[k]= % y[k] (cf. 44.7.3), we obtain
the following piece of program:

«begin
pi=q—1;
for % := g step 1 until » do
begin

comment here $ congruent £ —1 (mod q) ;
for /:=1 step 1 until » do
begin
comment Evaluation of Adams-Bashforth formula ;
§:=0;
forj:=0step1untilg—1dos:=s+c[p+qg—7]xz[{,];
yy[k 1] :=y[l]:=y[]+hxXs;
end/ ;
x:=x+h;
p:=if p=g—1then 0 else p+1 ;

§33. Numerical Integration of Differential Equations 109

comment Compute derivatives f[/] of y[/] at ¥ and insert these into
the array z ;
equ (%, y,m) res: (f) ;
for /:=1 step 1 until n do 2[p,] :=f[I]
end %
end».

After termination, the array yy[q:7, 1:#] contains the components of
the solution at all meshpoints x,, %,,4, ..., %,.

33.3. Laplace’s equation

Let L be a domain whose boundary lies entirely on grid lines of a
square grid (with mesh size % X /). We attempt to solve

Au=1f(x,9) inL,
u=20 on boundary.

Such a domain can be described in terms of the intersections of all
vertical grid-lines with the domain. Indeed, if we define the interior grid
points F,; for every fixed ¢ by the inequalities

M=j=a,
B=T1=a,

Ay _1=7j=<a, (meven),

and represent the a, for every ¢ as a vector ¥,=(a,, s, ..., 4,,), the
domain is defined. For convenience the number # is added as the
zero-th component 4, to this vector.

However, this ““description” of a domain usually takes an undue
amount of storage space, which can be reduced considerably if identical
vectors ¥, are listed only once, but a —2-nd and a —1-st component
are added with the meaning that ¥, is valid for those ¢ for which
a_p,<1=<a_,. The whole domain is then defined by an integer array
a[1:n, —2:mmax], every line of which pertains to a group of vertical
grid lines which have identical intersections with the interior of L.

As an example the domain (see Fig. 29) is defined by the array
(n=0, mmax=0)

—2 —1 0 1 2 3 4 5 6
1|5 6 2 5 17 0 0 0 0
2| 7 12 4 5 17 39 4% 0 0
3 113 13 4 5 17 32 45 0 0
4 |14 18 6 5 9 15 17 32 45
5 119 28 4 5 9 15 45 0 0
6 129 33 2 5 45 0 0 0 0

110 V. Miscellaneous Applications

; V' N Exterior
sof
//
45t =
401 :
J5F
=32

J0F
25
20 -%

I 0'1/=/7
75} 1,15
0r E::”z=3
S+ EEU]=5 /

/ 1 1 1 L 1 % 1

0 5 70 75 20 25 30 35 L
Fig. 29

Likewise a square domain subdivided into a grid of 10 X 10 smaller
squares would appear as the degenerate array a[1:1, —2:2]:

1 o 2 1 9]

To solve now the Dirichlet problem, e.g. by overrelaxation, we assume
that the solution at grid point 4, § is denoted by x[%, 4] and f(x, y) at

%, by f[4,1]:
«begin
for i := 0 step 1 until imax do
for j:= 0 step 1 until jmax do x[7,7]:=0;
for %z :=1 step 1 until ktmax do
begin
rr:=0;
step: for c:=1 step 1 until » do
fori:=afc, —2] step 1 until a[c, —1] do
for p := 2 step 2 until a[¢, 0] do
forj:=alc, p—1] step 1 until a[c, p] do

§34. Least Square Problems 111

begin

res:=4Xx[4, 7] — 2[4, 7 —1] —x[4, §+1]
—x[i+1, 7] —x[i—1, 7] —rt2Xxf[5,1] ;

rri=rr4rest2 ;
%[, 7] 1= x[4,] — omega Xres[4

endc,7,9,7;

if r» < epst2 then goto out
end % ;
out:
end>».

Statement sfep, which describes essentially one single overrelaxation
step, is a fourfold loop: ¢ counts the groups of vertical grid lines having
identical intersections with L, ¢ counts the vertical lines within the
groups, p counts the sections which L cuts out of one vertical line in
each group, and 7 counts the grid points within these sections.

§ 34. Least Square Problems

34.1. Orthogonalisation

The solution of more than m linear equations with s unknowns,
m
vi=Dap%+b=0 (=1,2,...,n>m)
k=1

in the sense of Gauss is characterized by

7”

> 7} = min.

i=1
and is found most conveniently by orthogonalisation of the columns of
the matrix 4={(a;;). The Schmidt orthogonalisation process requires
strict orthogonality of the resulting vectors, but this is not guaranteed
automatically if the process is carried out numerically. Indeed, if the
orthogonalisation step

k-1
5’k(old) — 3I(zHGW) ='1‘)”£old) _.erk ; '{%(new) (1)
j=

(see also statement orth in the program below) produces a vector v{2e™
which is much shorter than the given ¥ was, then the roundoff errors may
have the effect that ¥, is oblique to some of the vectors 7y, 7, ..., Ty_;.
To avoid this, the orthogonalisation is repeated (statement rep) whenever
the reduction (1) reduces the length J/# of ¥, to less than one tenth! of

1 The program will fail if the length of the vector 17; is reduced to zero.

112 V. Miscellaneous Applications

its original length, but the #[%, 2] produced by the repetition have no
further meaning:

«begin
for k:=1 step 1 until m do
begin
l:=1tt:=0;

forj:=1step 1 untilndot:=t+alf, k]12;
orth: for i:=1 step 1 until 2—1 do
begin
§:=0;
for j:=1 step 1 until » do s:=s+alj, 1] Xalj, k] ;
ifit=0thenr[i, k]:=s5s;
for j:=1 step 1 until n do a[j, k] :=a[j, k] —sxalj, 1] ;
end s ;
t:=0;
ith: for j:=1 step 1 until » do tt:=tt+alj, £]12 ;
if #£ < 0.01 Xt then
rep: begin
t:=1it;
goto orth
end if ;
vk, k] 1= sqrt(tf) ;
norm: forj:=1 step1 until n do a[f, k] :=alj, k]/7 [k, k]
end %
end».

The result of this algorithm is a new # X matrix 4®™, which is
stored in place of the given matrix 4, and an upper triangular matrix
R=(r;;) such that A®*") X R equals the given matrix 4.

To solve now the problem |A %+ Z]:Min., we add Z to A as the
m--1-th column and apply the above program to the extended # X (#m41)
matrix (to this effect we must use the program with m4-1 in place of m).
Then the components of % are the solution to the linear system

%+ rheXet o Fm X mr =0
TaaXg+ *** +72,m xm+72,m+1 =0

rm,mxm + rm,m+1 =0,

whereas 7,, 11 ,,+, is the attained minimal value of |4 Z49|.

§34. Least Square Problems 113

34.2, Generation of orthogonal polynomials

Following G. FORSYTHE [14] we can generate polynomials P, (x) which
are orthogonal with respect to a given weight-function w(x), i.e. such that

fP w(x)dx =6,

by the tri-term recurrence relation

B (x)=(x—a)B_1(%) —b_1 B_,(%),
where

f xw (%) Bly(%)dx,
and b, is determined such that
b
Jw(x)B3(x)dx=1.

The program given below assumes that the orthogonality interval is
(0, 1) and that w(x) is given in tabular form as a vector w[0:%#] where

—w(f/n) for j=0,n
wlil={"
- @(ifn) for §=0,n.

It computes all integrals by the trapezoidal rule and produces also the
polynomials B, (x) in tabular form:

«begin
§s:=0;
forj:=0step1 untilndos:=s+w[f];
s:=1/sqrt(s) ;
for j:=0 step 1 until # do p[0,7]:=s;
for z:=1 step 1 until » do
begin
comment Here B,_, (%) and for 24=1 also B,_,(x) are available and
normalized ;

§:=0;
forj:=0step1 until n dos:=s+jxp[k—1,7]12Xw[f] ;
alk]:=s|n ;

comment Generate Polynomial F, (%) ;
if /=1 then for j := 0 step 1 until » do
Pk 1= (j|n—alk]) xp[k—1,7] ;
if k<=1 then for j := 0 step 1 until » do
plRgl:=(n—al[k]) xplk—1,7]—b[k—1]xp[k—2,7];
§:=0;

8 Rutishauser, Description of ALGoL 60

114 V. Miscellaneous Applications

comment Normalize B, (x) ;
forj:=0stepiuntil ndos:=s+wl[f]xp[% 7112 ;
bR] :=sqrt(s) ;
for j:= 0 step 1 until » do p[%, 7] := p [k, 71/0[#]
end % ;
end».

At the end, the orthogonal polynomials F,(x) (k=0,1, ..., m) are
available in tabular form as the rows of the matrix p, p[%, j] being
approximately the value of B,(x) at the meshpoint x=7/x.

To use these polynomials for curve fitting, i.e. to approximate f(x)

by 2 ¢, B (x) such that
0

1

Jw(x) (]‘(x) — ? ¢, B, (x))zdx = Min.,

0

the ¢, can be determined as follows (It is assumed that f(x) is a function
designator which computes the value of f at x):

«for k& := 0 step 1 until m do

begin
$:=0;
for j:=0 step 1 until » do s:=s+w[j] X/ (j/n) xp[k, 1] ;
clk]:=s

end».

34.3. Chebychev series development

Let f(x) be a function defined on the interval (—1, 1). We require
a least-square approximation

1) =3+ 2 6%, (2)

where T, (x) = cos (k X arccos (%)), with w(x) =1/sqrt(1— x12).
To obtain the ¢,, we compute

These c{” are computed for increasing values of # until they settle
down to limits
¢, = lim ¢{",
n—>o00

which are the coefficients occurring in (2).

§34. Least Square Problems 115
Since the values cos {l—;

process, they are not computed using the standard function cos(x);
instead we generate for every new n a table consisting of the values

d,=cos (% n) (p=0,1,2,...,4n). Then we can read from this table

Y
the values x,=d,,,; and cos {l%kn}zdm,- 11y, where of course

k(27 +1) must be taken modulo 4.

1
2 kn} are used over and over again in the

If we let # run through the values 2, 4, 8, 16, ..., then we can compute
the 4’s for 2% recursively from those for # by virtue of the half-argument
formulae of the cosine. On the whole we obtain the program below.
Termination occurs either by a jump to the label noncon (supposed to
be somewhere outside this piece of program), if nmax was insufficient
to yield sufficiently close agreement between the ¢{® and ¢{®, or other-
wise by an exit through «end». In the latter case the agreement may
still be accidental, and in this respect this piece of program is not quite
foolproof.

«begin
for % := 0 step 1 until wmax do c[k]:=0 ;
comment Compute initial values of the 4[%] (corresponding to n=1) ;
d[0]:=d[4]:=1;
ad{1]:=d[3]:=0;

a[2]:=—1;
for n:= 2, 2 X% while n<#nmax do
begin

comment Start computation of all ¢c[£] for one . Compute first new
values 4 [%] interlaced between the old ones ;
for j:=2xn step —1 until 1 do d[2x7]: =4[] ;
al:= sqrt(24+2xd[2]) ;
forj:=1step2until4 xun—1dod[j] := (d[j +1]+d[f—1])/d1 ;
t:=0;
for j:= 0 step 1 until n—1 do fet[f] := f(d[2 %7+ 1]) ;
for k:= 0 step 1 until » —1 do

begin
comment Start summation (3) for computing ¢[%] ;
§:=0;
th:=Fk;

for j:= 0 step 1 until »—1 do
begin

8*

116 V. Miscellaneous Applications

comment jk is congruent % X (2 x7-+1) modulo 4 X# ;
si=s+d[JR] X fet[f] ;
jki=jk+2xEk ;
if jk>4xn then jk:=jk—4xn
endj;
cl:=2xs/n;
ti=t+abs(cl—c[R]);
c[R]:=cl;
end % ;
comment ¢ is sum of absolute differences between old and new c[k]’s ;
if £ < eps then goto limit ;
end 7 ;
goto noncon ;
limit:
end».

§ 35. Computations Related to Continued Fractions

35.1. Introduction
Continued fractions are constructions of the form

f t t fm

bly bl bl Il (1)
where f, and g, are given functions of the subscript %. In analysis this
concept is extended to m = oo and thus successfully used to represent
various transcendental functions!. As an example, if =1, f,i=k—1
for £>1, g,==z for all %, the (infinite) continued fraction converges for
all positive real z to

oo
e? [e—P24t,
1

whereas the corresponding power series

11,3 3X5 | 3X5X7
z—z3+z5_ P 22

_+...

is an asymptotic expansion, diverging for all z. Likewise in many other
instances divergent or badly convergent power series can be transformed
into convergent continued fractions.

In numerical practice the continued fractions must of course always
be truncated to finite length and then have the form (1). If the coef-
ficients f, g are given as two arrays, (1) can be evaluated by backward
recurrence, which bases on the fact that the relation s® =#f,/(g,+ s**%)
holds between the values

fx fa f
S(k)zlfé;?'“‘\?k{rf,u +ﬁl (k=1,2,...,m).
1 See H. S. WaLL [39)].

§35. Computations Related to Continued Fractions 117

Introducing s+ =0 and omitting the superscripts of s, we obtain the
following piece of program which computes the value of (1) as ¢f:

«begin
$s:=0,;
for % :=m step —1 until 1 do s:=f[k]/(s+g[%]) ;
cf:=s

end».

35.2. Evaluation by the forward recurrence relation

The above method of evaluation is usually not appropriate if we are
concerned with truncated infinite continued fractions because then m is
not known a priori but rather depends upon the speed of convergence.
Moreover, it is in this case also uneconomical to assume the f;, g, as
being given as components of two arrays. Therefore the following modi-
fications are recommended: First, the f,, g, are computed for every &
by function designators «ff(&)», «gg(k)». Second, we use the forward
recurvence formulae?:

By=1, 4,=0, A4,=f, B,=g,
A=Ay 1+ hAro By=&Bi1+LBia k=23,...,adinf. (2)

with which the value of the (infinite) continued fraction is obtained as
kli_r)n (A4,/B,) and can therefore be approximated to any desired accuracy.
00

However, there is some problem in storing the A,, B,: Since A,
depends on 4,_, and 4,_,, we cannot discard 4,_, after computation
of 4,, but we can overwrite 4,_, with 4, (and likewise for the B’s).
This suggests the use of two positions for the 4,, say a[1] for even,
a[—1] for odd %, and b[1], 6{—1] for B. Thus with the termination

criterion §Z~ — g:ﬂ < eps being checked every r-th step, the follow-
—1
ing program emerges (compare also 36.4):
«begin
pi=gqg:=1;

a1]:=0; b[1]:=1;
a[—1]:=ff(1) ; b[—1]:=gg(1) ;
for & := 2 step 1 until kmax do
begin
fi=1HR); g:=g8(k);
alp]:=gxa[—p]+fxa[p];
b[p]:=gxb[—p]+[xb[p];
if ==g x7r then

1 See H. S. WaALL [39], § 1.

118 V. Miscellaneous Applications

begin
of :=a[p]/b[#] ;
cg:=al[—p]b[—2];
if abs (cf — cg) < eps then goto ex ;

g:=q+1;
end if ;
pi=—p;
end %k ;
ex:
end».

35.3. Transformation of a power series into a continued fraction

o0
To “nearly every” power series) ¢, x* there exists a corresponding
continued fraction k=0
o ax|

1 1 1

which is uniquely defined by the property that for every m the rational

function
17 ax| ayx =1
fm(x)——T"[—ﬁ—ﬂi [—-"'—|"; (3)

agrees up to the x#™-term with the given power series.

One method for computing the coefficients 4, from given ¢, is the
quotient-difference algorithm [28], which can be described as follows:
From the given coefficients ¢, we compute

the quotients P =c,14/c,,

the differences) = glt+D) — glB),

the quotients g = (4 1) xgf

the differences el) = (glt+Y) — gy L kD) etc.,

generally {g](k) =g+ — ¢® | o4 “
(uting ¢ =) gt = () x g+

Then the coefficients a, of the corresponding continued fraction are

Aop—1 =qgo)

= gg))

}(k=1,2,...).

Asp,

The rules (4) are transformed into an easily memorizable form (so-
called rhombus rules, cf. E. STIEFEL [35]) if we arrange the ¢’s and ¢’s

§35. Computations Related to Continued Fractions 119

in a quotient-difference table:

%o
gy
o el
1 0
g g
Ca et e
2 1 0
gt g8 g5
R R
8 - 2
o 5 g

In this two-dimensional array the ¢’s in the leftmost column are
given and the ¢, ¢ in the top diagonal row are sought. They can be
computed by systematic application of the rhombus rules from left to
right. To obtain an economical program, we must find an arrangement
which does not require all these elements to be stored at the same time,
but if possible only one row or column at once. To do this, let us
first rename the entries of the gd-table as follows:

Co
a)
a al)
o o
o o
a® a® a9
Cs ad a®
N

For every new ¢, given, we compute one new antidiagonal consisting of
the values a)_;,af¥)_,, ..., a{ (in this order), where a{ is computed
from affY, al*=], al¥) | according to (4). We observe that af~" is no
longer used after a;k) has been computed; therefore the former can be
overwritten by the latter, which means that the quantities 4 can be
stored for all % as the same array component a[p]. In the following piece
of program the rhombus rules are distinguished by a Boolean variable ¢
(g = true refers to the Q-rule, ¢ = false to the E-rule).

«for k:=1 step 1 until m do
begin
a[2xk—1]:=c[k]lc[k—1];
a[2xk—2]:=0;
q:= true ;
for j:=2x%k—2 step —1 until 2 do

120 V. Miscellaneous Applications

begin
comment rhombus rules ;
a[j]:=if g then a[j+1]+a[j]—alj—1]
else a[j+1] xaljllalj —1] ;
q:=—q
endj ;
end k».

After execution of this program, the a,=a[k] (k=1,2,...,n) are
the coefficients of the finite continued fraction (3). In other words, the
a, ... a,, are the first m coefficients of the infinite continued fraction which

oo

corresponds to the power series) ¢, x*. The coefficients a,,,1, ..., @3p_;
E=0

on the other hand are not further used.

35.4. The epsilon algorithm?

If we intend to compute the value of (3) for many values of x, then
it is appropriate to compute first the coefficients a[1:m] and then
evaluate for every x the finite continued fraction (3). However, if we
want to evaluate f,, (x) just for one %, then it is computed more economi-
cally by the epsilon algorithm. This is a method which derives from a
given sequence epsy, epsd), epsl?, ..., a two-dimensional array eps®,
usually arranged as

epsf)

eps®
epsy) epsy’

eps{) epsy)
epsf epsy)

eps?) epsd
B L el

According to P. WyNN [41], the following is true: Ifkl_i)m eps exists,

then usually also the sequence eps{), epsf), eps), ... converges for every §
to the same limit, and so does the dlagonal sequence epsy’, epsy), epsi,
epsy), ... Usually the derived sequences converge faster than the given
one, and sometimes they converge even if the given sequence diverges.

To adapt the method for practical requirements, we condense the
epsilon array to those columns with even subscripts since only those

L P. WyNN [41].

§35. Computations Related to Continued Fractions 121

approximate the limit of the given sequence:
epsid
opsf) eps)
b epsd eps))
epsy) epsy epsy) epsy)

For the condensed epsilon-table we have also condensed recurrence rela-
tions (P. Wynn [42]):

1 1 1 1
ccwte_E=¢c—stc—n (5)

where C, N, W, S, E are any five elements of the condensed array stand-
ing in the relative positions
N
W C E
S

Relation (5) is also true if C is an element of the leftmost column,
provided we set W=o0 (we shall use ;430 instead). With this extension,
(5) is sufficient for building up the condensed array from the given
values eps{) simply by solving the relation for E and letting C run
through all entries except the top diagonal of the array.

However, also here we must avoid having to retain all elements of
the array simultaneously in storage. To achieve this, we rename the
condensed array as follows:

eps[0]

epsl1] epsf0]
eps(2] eps[1] i eps[o]
eps3] | eps[2] eps[1]
eps[4] eps[3]

and assume that at a given moment the last two elements of every
column (the elements below the dotted line) are available. Obviously,
as soon as the next element eps[k] (here £=6) of the first column is
given, the recursion rule (5) can be applied and a new element can be
computed in all other columns; moreover, a new column is started if
k is even. At the same time we can overwrite the elements immediately
below the dotted line, which completes the step from 2—1 to k.
However, one difficulty remains: the new elements are computed
before their respective storage positions become available. Indeed, if

122 V. Miscellaneous Applications

e.g. the next element eps[2] in the third column is computed, the old
eps[2] is still needed for computing a new eps[0] in the fourth column,
but eps[4] can be overwritten. For this reason we store the new elements
generally as eps[f+ 2] instead of eps[f] and shift them back at the end
of every step. This we do also for the given eps[£]. All in all we obtain
the following piece of program:

«begin
for k.= kmax step — 1 until 0 do eps[k+2]:= eps[k] ;
i:=1;
for & := 0 step 1 until kmax do
begin
ji=1—11;
comment At this point j7 is congruent %z modulo 2. §7 serves to distin-
guish cycles which produce epsilons with even subscripts
from cycles in which epsilons with odd subscripts are com-
puted ;
eps[k] := 1030 ;
forj:=F%—2 step —2 until 0 do eps[j+2] :=eps[f+1]—
1)(1/(eps [+1] — eps [71) +1/(eps [+ 1] — eps [j+4]) —
1)(epsTi+11—eps[j+2))) ;
for j:=jj step 2 until 2 do eps[j] := eps[j+2]
end %
end».

After termination eps[fj] will (usually) be the best approximation

for lim eps®; in fact, for kmax = even, and if the eps{ are the partial
— 00 .

sums of a power series Y} ¢;#/, then eps[0] coincides (theoretically)
0

with the value that would have resulted by evaluating the finite con-
tinued fraction (3) with m="Fkmax—1.

§ 36. Considerations Concerning Computer Limitations

The designer of an ALGOL program for a typical textbook algorithm
will observe that it takes comparatively little effort to transcribe the
algorithm into ALGoL, but he will also observe that it often requires
a much greater additional effort to achieve a program that produces
useful results despite roundoff errors and other computer limitations.
The present section serves to show some of the countermeasures which
must be built into programs in order to make them run properly and
— last but not least — to ensure proper termination of the program.

§36. Considerations Concerning Computer Limitations 123

36.1. Quadratic equations

On first sight one would hardly suspect that the classic formula
% 1= —p[2+sqrt(pt2/4—gq) for solving the equation x24px+g=0
might be endangered by computer limitations, and yet it bears two
sources of trouble:

First, if we solve e.g. x2— 7004+ 1=0 with 7 decimal digits relative
precision, the above formula yields for the smaller root:

%=350 — sq7t(122499) =350 — 349.9986=0.0014.

Due to cancellation of digits, this result has a relative error of 2 %.
This rather poor result can of course be improved by computing the
larger root first, after which x,=g/x,; this yields here

%,=1/699.9986=0.001428574.

Second, the above formula, because of the occurrence of 12, can be
used only for about half the exponent range. Indeed, in a computer in
which floating point numbers are confined to the interval

%< 204=1.844-10", the equation x%2—102x410%=0

can no longer be solved by that formula and this despite the fact that
the roots (10'? and 10* approximately) are well within the prescribed
range.

The following program for computing the two roots can be used in
the full number range and without fear of inexactness for the smaller
root x2:

«begin
if abs(p) > 100 then
begin
a:=1/4—qplp ;
if <0 then goto complx ;
xl:=—px(1]24sqrt(d)) ;
end
else
begin
d:=pi2/4—q;
if 4<<0 then goto compix ;
x1:= —p|2— (if p> 0 then sgrt(d) else — sqri(d))
end if —else ;
%2 := if x1=0 then 0 else ¢/x1
end».

124 V. Miscellaneous Applications

Note. The somewhat strange expression 1/4 — g/p/p on the fourth line
of the program would seem to be equivalent to 1/4 — g/p12; however,
the latter implies evaluation of $42, which might again cause overflow,
whereas g/p/p would not (it might produce underflow, but this is no
problem).

36.2. Newton’s method

In order to improve the unsatisfactory jumpout condition of the
program given in 31.2, it should be recognized that the true source of
the trouble are the roundoff errors involved in the computation of f(x),
which completely overshadow the value of f as soon as it becomes small.
A possible remedy is therefore to jump out of the loop as soon as f
comes down to the order of magnitude of the roundoff errors. This
requires that the influence of these errors (in the computation of f) be
carefully estimated:

The essence of computing f is the recurrence relation f,.,:=
faa X%+ a[k] in which we distinguish for the moment the value of f
before and after the operation. By this formula the error of f,4 is multi-
plied by x, but also a new error is produced, namely, if # denotes the
largest possible relative error of the computer:

=< AX%X[foa in the multiplication % X fyq,

< hxXMax(|%Xfqa|, |a[k]]) in the adjustment (if any) before the
addition of a[%],

= "X few in the adjustment (if any) after addition
of a[k].

Observing that de(lfooldI, |a[k]l) = Ixxfold| + |fnew|: the error con-
tributions can be computed parallel to the computation of f itself in
the same loop as follows (a variable noise is introduced which is to be
multiplied by % to obtain the maximum error itself):

«notse:=7f:=0;

noise := abs (x) X notse + abs (x Xf) ;
fi=xXf+aln]; }k=n

notse := notse + abs (f) ;

notse : = abs(x) X notse + abs (x Xf) ;
fr=xXf+an—1]; }k:n—1

notse : = noise + abs (f) ;

novse : = abs (x) X noise + abs (x Xf) ; }k:n——z
fr=2xXf+al0]; }k=0

noise : = notse + abs (f) ; »

§36. Considerations Concerning Computer Limitations 125

This scheme shows that we can combine the operation #noise:=
noise+abs(f) at the end of one loop with the operation noise:=
abs (x) X notse+abs (x X f) at the beginning of the next turn of the loop
and replace it by nosse : = abs (x) X noise+ 2 X abs (x X f). The final opera-
tion noise := noise--abs(f), which is in this way omitted, is an unim-
portant contribution.

By other considerations we find that the iteration should be con-
tinued as long as the computed f remains above six times the noise
level, i.e. as long as

abs (f) > 6 Xnoise X h.

However, this criterion uses a value % which is different for different
computers. In order to arrive at a computer-independent criterion, we
rewrite the above condition as

abs (f)/(6 X noise) > h,
which is equivalent to

1+ abs (f)/(6 X notse) >1.
On the whole the following program is obtained:

«begin
r: fi=gi=mnoise:=0;
for £ :=n step —1 until 0 do
begin
notse : = abs (x) Xnoise +2Xabs (x Xf) ;
gi=xxg+];
fi=xxf+alk]
end % ;
xi=x—flg;
if 1+ abs (f)/(6 X noise) &=1 then goto »
end».

Of course this program is not quite foolproof either, since we have
still not eliminated the danger of a small or vanishing g, which should
be banned, too. Also the imminent danger of overflow during calculation
of f and g is not eliminated in the above program. Indeed, if we attempt
to solve

%204+100041%4+1=0,

starting with x = — 1000, we obtain f =1, g=— 10%, where the latter is
already outside the (floating point) number range of certain computers.
However, we do not pursue this problem any further here.

36.3. Monotonicity as a termination criterion

Where a theoretically monotonic iteration process is carried out nu-
merically, it will be observed that monotonicity is lost after a certain

126 V. Miscellaneous Applications

number of steps. This is very likely, though not always, the proper
moment to discontinue the process, which is all the more welcomed,
as it is often difficult if not impossible to find other effective jumpout
criteria for iteration processes.

A trivial but characteristic example is the iteration process
xi=(1+a)[2, %= (n+a/x)2,

which produces a monotonically decreasing sequence converging to Ja.

In actual computation, however, monotonicity is destroyed as soon
as J/a— %, comes down to the roundoff-error level; obviously this is the
proper time for terminating the process.

To use the process in ALGoL (which is not actually needed because
sqrt is available as standard function), we denote %, by ¥, %,., by %
and terminate as soon as y>x (which theoretically should be true
forever) no longer holds:

«for x:= (1+4)/2, (a/y+y)/2 while y>x do y:= x».

Of course one might argue that y> x could be true forever despite
roundoff errors, in which case we would indeed obtain a closed loop.
However, this cannot be so for the following reasons:

Assume that y agrees to more than half of the digits with 4 and
that we have a binary computer, # having the same meaning as in 36.2.
Then for certain ’s in the range || <1 and omitting terms smaller
than O (h):

y=VYa+0,)a)h, hence afy=Va—0,YaVh+63)ah+0,h)a
(the last term being the roundoff error of division),
aly+y=2Ya+03)ah+0,h)a+20,)ah
(the last term being the roundoff error of the addition), and finally
x=Ya+03Yah/2+0,h)al2 4 0,Vah=)a+20;)ah.

Now if J/a has a mantissa slightly below 2, then 2} 4 are two units
of the last place of x; the possible values for x must therefore lie on an
interval whose length is four units of the last place, which leaves five
possible values for %, and these same values are also possible for the
following steps. Therefore, after at most four further steps, y> x can
no longer be true.

36.4. Overflow in continued fraction evaluation

If convergence of a continued fraction

Ter Tl Tl T

§36. Considerations Concerning Computer Limitations 127

is slow, then the evaluation algorithm described in 35.2 must run up to
very high values of % in order to achieve the desired result. However, in
doing so, very large values 4, and B, may be produced, causing overflow
of the exponent of floating point number representation, even if the
coefficients f,, g, are not largel.

In order to prevent overflow as well as underflow it is recommended
to check from time to time the size of 4, B,, 4,_,, B,_; (which in
fact are the values a[1], &[1], a[—1], b[—1] in our program) and rescale
them whenever needed. This is done by the following program which
checks every tenth step and to this end uses a subordinate (j-) loop
for counting the ten steps inside the (%-) loop for counting the blocks
of ten steps.

«begin
pi=1;
a[1]:=0; bd[1]:=1;
a[—11:= (1) ; b[—1]:=gg(1);
for & := 0 step 10 until Zmax do
begin
for j:= 2 step 1 until 11 do
begin
fi=1G+k; g:=gG+k) ;
a[p]:=gxa[—p]+fXa[p];
b[p]):=gXb[—p]+/xb[p] ;
pi=—p
endj ;
of :=a[11j[1] ;
cg:=a[—1]/b[—1];
if abs(c—cg) <eps then goto ex ;
max :=fabs(a[1])+abs{a[—1])+abs(b[1])+abs(b[—1]) ;
if max> 1420 then d:=,,—20
else
if max <;0—20 then d:= ;20
else
goto out ;
a[l]:=dxa[t]; b[1]:=dxb[1];
a[—1]:=dxa[—1]; b[—1]:=dxb[—1];
out: end £ ;
ex:
end».

1 The reader will observe that the bisection method for computing eigenvalues
of tridiagonal matrices uses similar recurrence formulae and therefore is subject to
the same danger of overflow.

128 V. Miscellaneous Applications

36.5. Underflow in orthonormalisation processes

Schmidt orthonormalisation as described in 34.1 by formula (1) re-
quires that the vectors;{“ew), e, 7)’2“_‘“1") be strictly orthonormal. In
an attempt to guarantee this, special measures have been built into
the program given in 34.1, and yet the program may still produce wrong
results because of underflow that might occur during execution of the
statement Ith.

On first sight such underflow would seem extremely unlikely or even
impossible ; however, it should not be overlooked that if a large number
of nearly parallel vectors should be orthonormalized, then every execution
of statement orth may reduce the length of the k-th column vector of
the array a considerably. Therefore, if the computer has a comparatively
small exponent range, it may well occur that at a certain stage in the
process some of the a[7, £]12 (k fixed) are a little below and some just
a bit above the underflow limit, whereupon the computed length of
the k-th column vector of a is too small; hence the normalized k-th
column is longer than 1 by an amount which is considerably larger than
the roundoff errors would explain. Since the further course of the cal-
culation requires (within computer accuracy) strict orthonormality, we
must be prepared for erroneous results.

In order to avoid trouble of this sort, the following process is re-
commended for normalizing a vector 7 given by its components v[1],
v[2], ..., v[#]: We do not add the squares of v 7] but instead the squares
of v[{]/vmax, where vmax denotes the maximum of all abs(v[f]). In
this way the following program emerges:

«begin
omax =0 ;
for j .= 1 step 1 until » do
if abs (v[7]) > vmax then vmax := abs(v[{]) ;

if ymax=0 then goto zero ;

comment zero is the place where the computation continues in case v

is the zero vector ;

s:=0,
for j:=1 step 1 until # do s := s+ (v[7]/vmax)}2 ;
¢ 1= vmax Xsqrt(s) ;

comment Here s = length of vector v ;

end».

Naturally the question of economy must be raised here, since this
way of computing the length of a vector is an obvious waste of time
if this length is not of extreme order of magnitude. Of course we can
at least avoid the # divisions v [f]/omax if 7 is a vector of “normal”’ size,

§36. Considerations Concerning Computer Limitations 129

but for taking advantage of this possibility the size of vmax must be
tested as follows:

«if (if vmax > 100 then 0.01/vmax[vmax else ;,—10 X vmax X vmax) == 0
then begin comment Follows normal evaluation of length of v ;
... end else begin comment Abnormal case ;... end».

In this if-clause the left hand side of the relation has the value 0.01/vmax}2
or ,p—10 Xvmax}2. The first alternative serves to exclude overflow, the
second to prevent underflow in the computation of those v[4]12 which
are still important contributions to s (assuming an 10-digit mantissa).

36.6. Bandmatrices

Another kind of computer limitation is the finite storage capacity
which forces us to economization if large matrices are used in a cal-
culation. A classical example of this sort are bandmatrices, which often
occur in eigenvalue problems and as coefficient matrices of linear systems.

A bandmatrix is defined as one which has nonzero elements only in
the vicinity of the diagonal, i.e. one whose elements a[7, 2] (i, k=
1, 2, ..., n) have the property

ali,k]=0 for |i—Fk|>m,

where m is a certain number called the bandwidth of the matrix. Of course,
according to this definition every matrix is a bandmatrix if we take
m=mn—1, but the essence of this notion is that bandmatrices with m
appreciably smaller than # allow enormous savings in computing time
as well as storage requirements, if only the computation is organized
properly.

In order to save storage space, the band of nonzero elements of the
matrix A=(a[s,§]) must be transformed into a rectangular array
B=(b[t, k]) as follows:

A

<==-
\
\
N

Fig. 30

The array element a[7, j] of 4 is transformed into the element 5[, § — 7]
of the array B, which, since a[7, j] =0 only if |{—4| <m, can be de-
clared as

«array b[1:n, —m:m]»

9 Rutishauser, Description of ALGoL 60

130 V. Miscellaneous Applications

and thus requires only (2m-1)# storage places instead of #12 for the
usual matrix notation.

The bandmatrix notation, as we shall call this kind of representation
of a bandmatrix, has the property that the first subscript indicates the
line, whereas the second subscript is the distance from the diagonal.
The diagonal elements thus appear as b[, 0], whereas b [¢, k] with posi-
tive (negative) k& denotes a super (sub)-diagonal element. For symmetric
bandmatrices we might achieve a further saving since in this case B
need only be declared as

«array b[1:n, 0:m]».

Note that the array b contains two small corners consisting of elements
b[4,7] (those with ¢+7># and those with ¢+7< 1) which do not cor-
respond to elements within the matrix 4; in the following we shall
ass<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>